Step |
Hyp |
Ref |
Expression |
1 |
|
cmslsschl.x |
β’ π = ( π βΎs π ) |
2 |
|
chlcsschl.s |
β’ π = ( ClSubSp β π ) |
3 |
|
hlbn |
β’ ( π β βHil β π β Ban ) |
4 |
|
hlcph |
β’ ( π β βHil β π β βPreHil ) |
5 |
3 4
|
jca |
β’ ( π β βHil β ( π β Ban β§ π β βPreHil ) ) |
6 |
1 2
|
bncssbn |
β’ ( ( ( π β Ban β§ π β βPreHil ) β§ π β π ) β π β Ban ) |
7 |
5 6
|
sylan |
β’ ( ( π β βHil β§ π β π ) β π β Ban ) |
8 |
|
hlphl |
β’ ( π β βHil β π β PreHil ) |
9 |
|
eqid |
β’ ( LSubSp β π ) = ( LSubSp β π ) |
10 |
2 9
|
csslss |
β’ ( ( π β PreHil β§ π β π ) β π β ( LSubSp β π ) ) |
11 |
8 10
|
sylan |
β’ ( ( π β βHil β§ π β π ) β π β ( LSubSp β π ) ) |
12 |
1 9
|
cphsscph |
β’ ( ( π β βPreHil β§ π β ( LSubSp β π ) ) β π β βPreHil ) |
13 |
4 11 12
|
syl2an2r |
β’ ( ( π β βHil β§ π β π ) β π β βPreHil ) |
14 |
|
ishl |
β’ ( π β βHil β ( π β Ban β§ π β βPreHil ) ) |
15 |
7 13 14
|
sylanbrc |
β’ ( ( π β βHil β§ π β π ) β π β βHil ) |