Metamath Proof Explorer


Theorem chlcsschl

Description: A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008) (Revised by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslsschl.x X=W𝑠U
chlcsschl.s S=ClSubSpW
Assertion chlcsschl WℂHilUSXℂHil

Proof

Step Hyp Ref Expression
1 cmslsschl.x X=W𝑠U
2 chlcsschl.s S=ClSubSpW
3 hlbn WℂHilWBan
4 hlcph WℂHilWCPreHil
5 3 4 jca WℂHilWBanWCPreHil
6 1 2 bncssbn WBanWCPreHilUSXBan
7 5 6 sylan WℂHilUSXBan
8 hlphl WℂHilWPreHil
9 eqid LSubSpW=LSubSpW
10 2 9 csslss WPreHilUSULSubSpW
11 8 10 sylan WℂHilUSULSubSpW
12 1 9 cphsscph WCPreHilULSubSpWXCPreHil
13 4 11 12 syl2an2r WℂHilUSXCPreHil
14 ishl XℂHilXBanXCPreHil
15 7 13 14 sylanbrc WℂHilUSXℂHil