| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmslsschl.x |
|- X = ( W |`s U ) |
| 2 |
|
chlcsschl.s |
|- S = ( ClSubSp ` W ) |
| 3 |
|
hlbn |
|- ( W e. CHil -> W e. Ban ) |
| 4 |
|
hlcph |
|- ( W e. CHil -> W e. CPreHil ) |
| 5 |
3 4
|
jca |
|- ( W e. CHil -> ( W e. Ban /\ W e. CPreHil ) ) |
| 6 |
1 2
|
bncssbn |
|- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. Ban ) |
| 7 |
5 6
|
sylan |
|- ( ( W e. CHil /\ U e. S ) -> X e. Ban ) |
| 8 |
|
hlphl |
|- ( W e. CHil -> W e. PreHil ) |
| 9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 10 |
2 9
|
csslss |
|- ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 11 |
8 10
|
sylan |
|- ( ( W e. CHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 12 |
1 9
|
cphsscph |
|- ( ( W e. CPreHil /\ U e. ( LSubSp ` W ) ) -> X e. CPreHil ) |
| 13 |
4 11 12
|
syl2an2r |
|- ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) |
| 14 |
|
ishl |
|- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) |
| 15 |
7 13 14
|
sylanbrc |
|- ( ( W e. CHil /\ U e. S ) -> X e. CHil ) |