| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circgrp.1 | ⊢ 𝐶  =  ( ◡ abs  “  { 1 } ) | 
						
							| 2 |  | circgrp.2 | ⊢ 𝑇  =  ( ( mulGrp ‘ ℂfld )  ↾s  𝐶 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( i  ·  𝑥 )  =  ( i  ·  𝑦 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( exp ‘ ( i  ·  𝑥 ) )  =  ( exp ‘ ( i  ·  𝑦 ) ) ) | 
						
							| 5 | 4 | cbvmptv | ⊢ ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑦 ) ) ) | 
						
							| 6 | 5 1 | efifo | ⊢ ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) ) : ℝ –onto→ 𝐶 | 
						
							| 7 |  | forn | ⊢ ( ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) ) : ℝ –onto→ 𝐶  →  ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) )  =  𝐶 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) )  =  𝐶 | 
						
							| 9 | 8 | eqcomi | ⊢ 𝐶  =  ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) ) | 
						
							| 10 | 9 | oveq2i | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  𝐶 )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) ) ) | 
						
							| 11 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 12 | 11 | a1i | ⊢ ( ⊤  →  i  ∈  ℂ ) | 
						
							| 13 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 14 | 13 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 15 |  | subrgsubg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ℝ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ℝ  ∈  ( SubGrp ‘ ℂfld ) | 
						
							| 17 | 16 | a1i | ⊢ ( ⊤  →  ℝ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 18 | 5 10 12 17 | efsubm | ⊢ ( ⊤  →  ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) )  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 19 | 18 | mptru | ⊢ ran  ( 𝑥  ∈  ℝ  ↦  ( exp ‘ ( i  ·  𝑥 ) ) )  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 20 | 9 19 | eqeltri | ⊢ 𝐶  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |