Metamath Proof Explorer


Theorem circsubm

Description: The circle group T is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1
|- C = ( `' abs " { 1 } )
circgrp.2
|- T = ( ( mulGrp ` CCfld ) |`s C )
Assertion circsubm
|- C e. ( SubMnd ` ( mulGrp ` CCfld ) )

Proof

Step Hyp Ref Expression
1 circgrp.1
 |-  C = ( `' abs " { 1 } )
2 circgrp.2
 |-  T = ( ( mulGrp ` CCfld ) |`s C )
3 oveq2
 |-  ( x = y -> ( _i x. x ) = ( _i x. y ) )
4 3 fveq2d
 |-  ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) )
5 4 cbvmptv
 |-  ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = ( y e. RR |-> ( exp ` ( _i x. y ) ) )
6 5 1 efifo
 |-  ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C
7 forn
 |-  ( ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C )
8 6 7 ax-mp
 |-  ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C
9 8 eqcomi
 |-  C = ran ( x e. RR |-> ( exp ` ( _i x. x ) ) )
10 9 oveq2i
 |-  ( ( mulGrp ` CCfld ) |`s C ) = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) )
11 ax-icn
 |-  _i e. CC
12 11 a1i
 |-  ( T. -> _i e. CC )
13 resubdrg
 |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing )
14 13 simpli
 |-  RR e. ( SubRing ` CCfld )
15 subrgsubg
 |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) )
16 14 15 ax-mp
 |-  RR e. ( SubGrp ` CCfld )
17 16 a1i
 |-  ( T. -> RR e. ( SubGrp ` CCfld ) )
18 5 10 12 17 efsubm
 |-  ( T. -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) )
19 18 mptru
 |-  ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) e. ( SubMnd ` ( mulGrp ` CCfld ) )
20 9 19 eqeltri
 |-  C e. ( SubMnd ` ( mulGrp ` CCfld ) )