| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efabl.1 |  |-  F = ( x e. X |-> ( exp ` ( A x. x ) ) ) | 
						
							| 2 |  | efabl.2 |  |-  G = ( ( mulGrp ` CCfld ) |`s ran F ) | 
						
							| 3 |  | efabl.3 |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | efabl.4 |  |-  ( ph -> X e. ( SubGrp ` CCfld ) ) | 
						
							| 5 |  | eff |  |-  exp : CC --> CC | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ x e. X ) -> exp : CC --> CC ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 8 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 9 | 8 | subgss |  |-  ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> X C_ CC ) | 
						
							| 11 | 10 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 12 | 7 11 | mulcld |  |-  ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) | 
						
							| 13 | 6 12 | ffvelcdmd |  |-  ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) | 
						
							| 15 | 1 | rnmptss |  |-  ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ran F C_ CC ) | 
						
							| 17 | 3 | mul01d |  |-  ( ph -> ( A x. 0 ) = 0 ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) | 
						
							| 19 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ph -> ( exp ` ( A x. 0 ) ) = 1 ) | 
						
							| 21 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 22 | 21 | subg0cl |  |-  ( X e. ( SubGrp ` CCfld ) -> 0 e. X ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> 0 e. X ) | 
						
							| 24 |  | fvex |  |-  ( exp ` ( A x. 0 ) ) e. _V | 
						
							| 25 |  | oveq2 |  |-  ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( x = 0 -> ( exp ` ( A x. x ) ) = ( exp ` ( A x. 0 ) ) ) | 
						
							| 27 | 1 26 | elrnmpt1s |  |-  ( ( 0 e. X /\ ( exp ` ( A x. 0 ) ) e. _V ) -> ( exp ` ( A x. 0 ) ) e. ran F ) | 
						
							| 28 | 23 24 27 | sylancl |  |-  ( ph -> ( exp ` ( A x. 0 ) ) e. ran F ) | 
						
							| 29 | 20 28 | eqeltrrd |  |-  ( ph -> 1 e. ran F ) | 
						
							| 30 | 1 2 3 4 | efabl |  |-  ( ph -> G e. Abel ) | 
						
							| 31 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 33 | 32 | 3ad2ant1 |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> G e. Grp ) | 
						
							| 34 |  | simp2 |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> x e. ran F ) | 
						
							| 35 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 36 | 35 8 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 37 | 2 36 | ressbas2 |  |-  ( ran F C_ CC -> ran F = ( Base ` G ) ) | 
						
							| 38 | 16 37 | syl |  |-  ( ph -> ran F = ( Base ` G ) ) | 
						
							| 39 | 38 | 3ad2ant1 |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> ran F = ( Base ` G ) ) | 
						
							| 40 | 34 39 | eleqtrd |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> x e. ( Base ` G ) ) | 
						
							| 41 |  | simp3 |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> y e. ran F ) | 
						
							| 42 | 41 39 | eleqtrd |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> y e. ( Base ` G ) ) | 
						
							| 43 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 44 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 45 | 43 44 | grpcl |  |-  ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) | 
						
							| 46 | 33 40 42 45 | syl3anc |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) | 
						
							| 47 | 4 | mptexd |  |-  ( ph -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) | 
						
							| 48 | 1 47 | eqeltrid |  |-  ( ph -> F e. _V ) | 
						
							| 49 |  | rnexg |  |-  ( F e. _V -> ran F e. _V ) | 
						
							| 50 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 51 | 35 50 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 52 | 2 51 | ressplusg |  |-  ( ran F e. _V -> x. = ( +g ` G ) ) | 
						
							| 53 | 48 49 52 | 3syl |  |-  ( ph -> x. = ( +g ` G ) ) | 
						
							| 54 | 53 | 3ad2ant1 |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> x. = ( +g ` G ) ) | 
						
							| 55 | 54 | oveqd |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x x. y ) = ( x ( +g ` G ) y ) ) | 
						
							| 56 | 46 55 39 | 3eltr4d |  |-  ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x x. y ) e. ran F ) | 
						
							| 57 | 56 | 3expb |  |-  ( ( ph /\ ( x e. ran F /\ y e. ran F ) ) -> ( x x. y ) e. ran F ) | 
						
							| 58 | 57 | ralrimivva |  |-  ( ph -> A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) | 
						
							| 59 |  | cnring |  |-  CCfld e. Ring | 
						
							| 60 | 35 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 61 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 62 | 35 61 | ringidval |  |-  1 = ( 0g ` ( mulGrp ` CCfld ) ) | 
						
							| 63 | 36 62 51 | issubm |  |-  ( ( mulGrp ` CCfld ) e. Mnd -> ( ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ran F C_ CC /\ 1 e. ran F /\ A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) ) ) | 
						
							| 64 | 59 60 63 | mp2b |  |-  ( ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ran F C_ CC /\ 1 e. ran F /\ A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) ) | 
						
							| 65 | 16 29 58 64 | syl3anbrc |  |-  ( ph -> ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |