Metamath Proof Explorer


Theorem efsubm

Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses efabl.1 F=xXeAx
efabl.2 G=mulGrpfld𝑠ranF
efabl.3 φA
efabl.4 φXSubGrpfld
Assertion efsubm φranFSubMndmulGrpfld

Proof

Step Hyp Ref Expression
1 efabl.1 F=xXeAx
2 efabl.2 G=mulGrpfld𝑠ranF
3 efabl.3 φA
4 efabl.4 φXSubGrpfld
5 eff exp:
6 5 a1i φxXexp:
7 3 adantr φxXA
8 cnfldbas =Basefld
9 8 subgss XSubGrpfldX
10 4 9 syl φX
11 10 sselda φxXx
12 7 11 mulcld φxXAx
13 6 12 ffvelcdmd φxXeAx
14 13 ralrimiva φxXeAx
15 1 rnmptss xXeAxranF
16 14 15 syl φranF
17 3 mul01d φA0=0
18 17 fveq2d φeA0=e0
19 ef0 e0=1
20 18 19 eqtrdi φeA0=1
21 cnfld0 0=0fld
22 21 subg0cl XSubGrpfld0X
23 4 22 syl φ0X
24 fvex eA0V
25 oveq2 x=0Ax=A0
26 25 fveq2d x=0eAx=eA0
27 1 26 elrnmpt1s 0XeA0VeA0ranF
28 23 24 27 sylancl φeA0ranF
29 20 28 eqeltrrd φ1ranF
30 1 2 3 4 efabl φGAbel
31 ablgrp GAbelGGrp
32 30 31 syl φGGrp
33 32 3ad2ant1 φxranFyranFGGrp
34 simp2 φxranFyranFxranF
35 eqid mulGrpfld=mulGrpfld
36 35 8 mgpbas =BasemulGrpfld
37 2 36 ressbas2 ranFranF=BaseG
38 16 37 syl φranF=BaseG
39 38 3ad2ant1 φxranFyranFranF=BaseG
40 34 39 eleqtrd φxranFyranFxBaseG
41 simp3 φxranFyranFyranF
42 41 39 eleqtrd φxranFyranFyBaseG
43 eqid BaseG=BaseG
44 eqid +G=+G
45 43 44 grpcl GGrpxBaseGyBaseGx+GyBaseG
46 33 40 42 45 syl3anc φxranFyranFx+GyBaseG
47 4 mptexd φxXeAxV
48 1 47 eqeltrid φFV
49 rnexg FVranFV
50 cnfldmul ×=fld
51 35 50 mgpplusg ×=+mulGrpfld
52 2 51 ressplusg ranFV×=+G
53 48 49 52 3syl φ×=+G
54 53 3ad2ant1 φxranFyranF×=+G
55 54 oveqd φxranFyranFxy=x+Gy
56 46 55 39 3eltr4d φxranFyranFxyranF
57 56 3expb φxranFyranFxyranF
58 57 ralrimivva φxranFyranFxyranF
59 cnring fldRing
60 35 ringmgp fldRingmulGrpfldMnd
61 cnfld1 1=1fld
62 35 61 ringidval 1=0mulGrpfld
63 36 62 51 issubm mulGrpfldMndranFSubMndmulGrpfldranF1ranFxranFyranFxyranF
64 59 60 63 mp2b ranFSubMndmulGrpfldranF1ranFxranFyranFxyranF
65 16 29 58 64 syl3anbrc φranFSubMndmulGrpfld