Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efabl.1 | |
|
efabl.2 | |
||
efabl.3 | |
||
efabl.4 | |
||
Assertion | efsubm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efabl.1 | |
|
2 | efabl.2 | |
|
3 | efabl.3 | |
|
4 | efabl.4 | |
|
5 | eff | |
|
6 | 5 | a1i | |
7 | 3 | adantr | |
8 | cnfldbas | |
|
9 | 8 | subgss | |
10 | 4 9 | syl | |
11 | 10 | sselda | |
12 | 7 11 | mulcld | |
13 | 6 12 | ffvelcdmd | |
14 | 13 | ralrimiva | |
15 | 1 | rnmptss | |
16 | 14 15 | syl | |
17 | 3 | mul01d | |
18 | 17 | fveq2d | |
19 | ef0 | |
|
20 | 18 19 | eqtrdi | |
21 | cnfld0 | |
|
22 | 21 | subg0cl | |
23 | 4 22 | syl | |
24 | fvex | |
|
25 | oveq2 | |
|
26 | 25 | fveq2d | |
27 | 1 26 | elrnmpt1s | |
28 | 23 24 27 | sylancl | |
29 | 20 28 | eqeltrrd | |
30 | 1 2 3 4 | efabl | |
31 | ablgrp | |
|
32 | 30 31 | syl | |
33 | 32 | 3ad2ant1 | |
34 | simp2 | |
|
35 | eqid | |
|
36 | 35 8 | mgpbas | |
37 | 2 36 | ressbas2 | |
38 | 16 37 | syl | |
39 | 38 | 3ad2ant1 | |
40 | 34 39 | eleqtrd | |
41 | simp3 | |
|
42 | 41 39 | eleqtrd | |
43 | eqid | |
|
44 | eqid | |
|
45 | 43 44 | grpcl | |
46 | 33 40 42 45 | syl3anc | |
47 | 4 | mptexd | |
48 | 1 47 | eqeltrid | |
49 | rnexg | |
|
50 | cnfldmul | |
|
51 | 35 50 | mgpplusg | |
52 | 2 51 | ressplusg | |
53 | 48 49 52 | 3syl | |
54 | 53 | 3ad2ant1 | |
55 | 54 | oveqd | |
56 | 46 55 39 | 3eltr4d | |
57 | 56 | 3expb | |
58 | 57 | ralrimivva | |
59 | cnring | |
|
60 | 35 | ringmgp | |
61 | cnfld1 | |
|
62 | 35 61 | ringidval | |
63 | 36 62 51 | issubm | |
64 | 59 60 63 | mp2b | |
65 | 16 29 58 64 | syl3anbrc | |