Metamath Proof Explorer


Theorem circgrp

Description: The circle group T is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by Mario Carneiro, 13-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1 C=abs-11
circgrp.2 T=mulGrpfld𝑠C
Assertion circgrp TAbel

Proof

Step Hyp Ref Expression
1 circgrp.1 C=abs-11
2 circgrp.2 T=mulGrpfld𝑠C
3 oveq2 x=yix=iy
4 3 fveq2d x=yeix=eiy
5 4 cbvmptv xeix=yeiy
6 5 1 efifo xeix:ontoC
7 forn xeix:ontoCranxeix=C
8 6 7 ax-mp ranxeix=C
9 8 eqcomi C=ranxeix
10 9 oveq2i mulGrpfld𝑠C=mulGrpfld𝑠ranxeix
11 2 10 eqtri T=mulGrpfld𝑠ranxeix
12 ax-icn i
13 12 a1i i
14 resubdrg SubRingfldfldDivRing
15 14 simpli SubRingfld
16 subrgsubg SubRingfldSubGrpfld
17 15 16 ax-mp SubGrpfld
18 17 a1i SubGrpfld
19 5 11 13 18 efabl TAbel
20 19 mptru TAbel