Metamath Proof Explorer


Theorem circgrp

Description: The circle group T is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by Mario Carneiro, 13-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1 𝐶 = ( abs “ { 1 } )
circgrp.2 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 )
Assertion circgrp 𝑇 ∈ Abel

Proof

Step Hyp Ref Expression
1 circgrp.1 𝐶 = ( abs “ { 1 } )
2 circgrp.2 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 )
3 oveq2 ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) )
4 3 fveq2d ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) )
5 4 cbvmptv ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( i · 𝑦 ) ) )
6 5 1 efifo ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto𝐶
7 forn ( ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto𝐶 → ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶 )
8 6 7 ax-mp ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶
9 8 eqcomi 𝐶 = ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) )
10 9 oveq2i ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) = ( ( mulGrp ‘ ℂfld ) ↾s ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) )
11 2 10 eqtri 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) )
12 ax-icn i ∈ ℂ
13 12 a1i ( ⊤ → i ∈ ℂ )
14 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
15 14 simpli ℝ ∈ ( SubRing ‘ ℂfld )
16 subrgsubg ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) )
17 15 16 ax-mp ℝ ∈ ( SubGrp ‘ ℂfld )
18 17 a1i ( ⊤ → ℝ ∈ ( SubGrp ‘ ℂfld ) )
19 5 11 13 18 efabl ( ⊤ → 𝑇 ∈ Abel )
20 19 mptru 𝑇 ∈ Abel