| Step | Hyp | Ref | Expression | 
						
							| 1 |  | circgrp.1 |  |-  C = ( `' abs " { 1 } ) | 
						
							| 2 |  | circgrp.2 |  |-  T = ( ( mulGrp ` CCfld ) |`s C ) | 
						
							| 3 |  | oveq2 |  |-  ( x = y -> ( _i x. x ) = ( _i x. y ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) | 
						
							| 5 | 4 | cbvmptv |  |-  ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = ( y e. RR |-> ( exp ` ( _i x. y ) ) ) | 
						
							| 6 | 5 1 | efifo |  |-  ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C | 
						
							| 7 |  | forn |  |-  ( ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C | 
						
							| 9 | 8 | eqcomi |  |-  C = ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) | 
						
							| 10 | 9 | oveq2i |  |-  ( ( mulGrp ` CCfld ) |`s C ) = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) | 
						
							| 11 | 2 10 | eqtri |  |-  T = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) | 
						
							| 12 |  | ax-icn |  |-  _i e. CC | 
						
							| 13 | 12 | a1i |  |-  ( T. -> _i e. CC ) | 
						
							| 14 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 15 | 14 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 16 |  | subrgsubg |  |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  RR e. ( SubGrp ` CCfld ) | 
						
							| 18 | 17 | a1i |  |-  ( T. -> RR e. ( SubGrp ` CCfld ) ) | 
						
							| 19 | 5 11 13 18 | efabl |  |-  ( T. -> T e. Abel ) | 
						
							| 20 | 19 | mptru |  |-  T e. Abel |