| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efabl.1 |  |-  F = ( x e. X |-> ( exp ` ( A x. x ) ) ) | 
						
							| 2 |  | efabl.2 |  |-  G = ( ( mulGrp ` CCfld ) |`s ran F ) | 
						
							| 3 |  | efabl.3 |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | efabl.4 |  |-  ( ph -> X e. ( SubGrp ` CCfld ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( CCfld |`s X ) ) = ( Base ` ( CCfld |`s X ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 7 |  | eqid |  |-  ( +g ` ( CCfld |`s X ) ) = ( +g ` ( CCfld |`s X ) ) | 
						
							| 8 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 9 |  | simp1 |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ph ) | 
						
							| 10 |  | simp2 |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. ( Base ` ( CCfld |`s X ) ) ) | 
						
							| 11 |  | eqid |  |-  ( CCfld |`s X ) = ( CCfld |`s X ) | 
						
							| 12 | 11 | subgbas |  |-  ( X e. ( SubGrp ` CCfld ) -> X = ( Base ` ( CCfld |`s X ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> X = ( Base ` ( CCfld |`s X ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> X = ( Base ` ( CCfld |`s X ) ) ) | 
						
							| 15 | 10 14 | eleqtrrd |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. X ) | 
						
							| 16 |  | simp3 |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. ( Base ` ( CCfld |`s X ) ) ) | 
						
							| 17 | 16 14 | eleqtrrd |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. X ) | 
						
							| 18 | 3 4 | jca |  |-  ( ph -> ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) ) | 
						
							| 19 | 1 | efgh |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) | 
						
							| 20 | 18 19 | syl3an1 |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) | 
						
							| 21 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 22 | 11 21 | ressplusg |  |-  ( X e. ( SubGrp ` CCfld ) -> + = ( +g ` ( CCfld |`s X ) ) ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> + = ( +g ` ( CCfld |`s X ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( ph /\ x e. X /\ y e. X ) -> + = ( +g ` ( CCfld |`s X ) ) ) | 
						
							| 25 | 24 | oveqd |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( x + y ) = ( x ( +g ` ( CCfld |`s X ) ) y ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) ) | 
						
							| 27 |  | mptexg |  |-  ( X e. ( SubGrp ` CCfld ) -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) | 
						
							| 28 | 1 27 | eqeltrid |  |-  ( X e. ( SubGrp ` CCfld ) -> F e. _V ) | 
						
							| 29 |  | rnexg |  |-  ( F e. _V -> ran F e. _V ) | 
						
							| 30 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 31 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 32 | 30 31 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 33 | 2 32 | ressplusg |  |-  ( ran F e. _V -> x. = ( +g ` G ) ) | 
						
							| 34 | 4 28 29 33 | 4syl |  |-  ( ph -> x. = ( +g ` G ) ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( ph /\ x e. X /\ y e. X ) -> x. = ( +g ` G ) ) | 
						
							| 36 | 35 | oveqd |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) | 
						
							| 37 | 20 26 36 | 3eqtr3d |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) | 
						
							| 38 | 9 15 17 37 | syl3anc |  |-  ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) | 
						
							| 39 |  | fvex |  |-  ( exp ` ( A x. x ) ) e. _V | 
						
							| 40 | 39 1 | fnmpti |  |-  F Fn X | 
						
							| 41 |  | dffn4 |  |-  ( F Fn X <-> F : X -onto-> ran F ) | 
						
							| 42 | 40 41 | mpbi |  |-  F : X -onto-> ran F | 
						
							| 43 |  | eqidd |  |-  ( ph -> F = F ) | 
						
							| 44 |  | eff |  |-  exp : CC --> CC | 
						
							| 45 | 44 | a1i |  |-  ( ( ph /\ x e. X ) -> exp : CC --> CC ) | 
						
							| 46 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 47 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 48 | 47 | subgss |  |-  ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) | 
						
							| 49 | 4 48 | syl |  |-  ( ph -> X C_ CC ) | 
						
							| 50 | 49 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 51 | 46 50 | mulcld |  |-  ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) | 
						
							| 52 | 45 51 | ffvelcdmd |  |-  ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) | 
						
							| 54 | 1 | rnmptss |  |-  ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) | 
						
							| 55 | 30 47 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 56 | 2 55 | ressbas2 |  |-  ( ran F C_ CC -> ran F = ( Base ` G ) ) | 
						
							| 57 | 53 54 56 | 3syl |  |-  ( ph -> ran F = ( Base ` G ) ) | 
						
							| 58 | 43 13 57 | foeq123d |  |-  ( ph -> ( F : X -onto-> ran F <-> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) ) | 
						
							| 59 | 42 58 | mpbii |  |-  ( ph -> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) | 
						
							| 60 |  | cnring |  |-  CCfld e. Ring | 
						
							| 61 |  | ringabl |  |-  ( CCfld e. Ring -> CCfld e. Abel ) | 
						
							| 62 | 60 61 | ax-mp |  |-  CCfld e. Abel | 
						
							| 63 | 11 | subgabl |  |-  ( ( CCfld e. Abel /\ X e. ( SubGrp ` CCfld ) ) -> ( CCfld |`s X ) e. Abel ) | 
						
							| 64 | 62 4 63 | sylancr |  |-  ( ph -> ( CCfld |`s X ) e. Abel ) | 
						
							| 65 | 5 6 7 8 38 59 64 | ghmabl |  |-  ( ph -> G e. Abel ) |