| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgh.1 |  |-  F = ( x e. X |-> ( exp ` ( A x. x ) ) ) | 
						
							| 2 |  | simp1l |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> A e. CC ) | 
						
							| 3 |  | simp1r |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X e. ( SubGrp ` CCfld ) ) | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 | 4 | subgss |  |-  ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) | 
						
							| 6 | 3 5 | syl |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X C_ CC ) | 
						
							| 7 |  | simp2 |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. X ) | 
						
							| 8 | 6 7 | sseldd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. CC ) | 
						
							| 9 |  | simp3 |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. X ) | 
						
							| 10 | 6 9 | sseldd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. CC ) | 
						
							| 11 | 2 8 10 | adddid |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( exp ` ( ( A x. B ) + ( A x. C ) ) ) ) | 
						
							| 13 | 2 8 | mulcld |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. B ) e. CC ) | 
						
							| 14 | 2 10 | mulcld |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. C ) e. CC ) | 
						
							| 15 |  | efadd |  |-  ( ( ( A x. B ) e. CC /\ ( A x. C ) e. CC ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) | 
						
							| 16 | 13 14 15 | syl2anc |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) | 
						
							| 18 |  | oveq2 |  |-  ( x = y -> ( A x. x ) = ( A x. y ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( x = y -> ( exp ` ( A x. x ) ) = ( exp ` ( A x. y ) ) ) | 
						
							| 20 | 19 | cbvmptv |  |-  ( x e. X |-> ( exp ` ( A x. x ) ) ) = ( y e. X |-> ( exp ` ( A x. y ) ) ) | 
						
							| 21 | 1 20 | eqtri |  |-  F = ( y e. X |-> ( exp ` ( A x. y ) ) ) | 
						
							| 22 |  | oveq2 |  |-  ( y = ( B + C ) -> ( A x. y ) = ( A x. ( B + C ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( y = ( B + C ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. ( B + C ) ) ) ) | 
						
							| 24 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 25 | 24 | subgcl |  |-  ( ( X e. ( SubGrp ` CCfld ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) | 
						
							| 26 | 25 | 3adant1l |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) | 
						
							| 27 |  | fvexd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) e. _V ) | 
						
							| 28 | 21 23 26 27 | fvmptd3 |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( exp ` ( A x. ( B + C ) ) ) ) | 
						
							| 29 |  | oveq2 |  |-  ( y = B -> ( A x. y ) = ( A x. B ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( y = B -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. B ) ) ) | 
						
							| 31 |  | fvexd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. B ) ) e. _V ) | 
						
							| 32 | 21 30 7 31 | fvmptd3 |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` B ) = ( exp ` ( A x. B ) ) ) | 
						
							| 33 |  | oveq2 |  |-  ( y = C -> ( A x. y ) = ( A x. C ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( y = C -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. C ) ) ) | 
						
							| 35 |  | fvexd |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. C ) ) e. _V ) | 
						
							| 36 | 21 34 9 35 | fvmptd3 |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` C ) = ( exp ` ( A x. C ) ) ) | 
						
							| 37 | 32 36 | oveq12d |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( ( F ` B ) x. ( F ` C ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) | 
						
							| 38 | 17 28 37 | 3eqtr4d |  |-  ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( ( F ` B ) x. ( F ` C ) ) ) |