Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 11-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | efgh.1 | |
|
Assertion | efgh | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgh.1 | |
|
2 | simp1l | |
|
3 | simp1r | |
|
4 | cnfldbas | |
|
5 | 4 | subgss | |
6 | 3 5 | syl | |
7 | simp2 | |
|
8 | 6 7 | sseldd | |
9 | simp3 | |
|
10 | 6 9 | sseldd | |
11 | 2 8 10 | adddid | |
12 | 11 | fveq2d | |
13 | 2 8 | mulcld | |
14 | 2 10 | mulcld | |
15 | efadd | |
|
16 | 13 14 15 | syl2anc | |
17 | 12 16 | eqtrd | |
18 | oveq2 | |
|
19 | 18 | fveq2d | |
20 | 19 | cbvmptv | |
21 | 1 20 | eqtri | |
22 | oveq2 | |
|
23 | 22 | fveq2d | |
24 | cnfldadd | |
|
25 | 24 | subgcl | |
26 | 25 | 3adant1l | |
27 | fvexd | |
|
28 | 21 23 26 27 | fvmptd3 | |
29 | oveq2 | |
|
30 | 29 | fveq2d | |
31 | fvexd | |
|
32 | 21 30 7 31 | fvmptd3 | |
33 | oveq2 | |
|
34 | 33 | fveq2d | |
35 | fvexd | |
|
36 | 21 34 9 35 | fvmptd3 | |
37 | 32 36 | oveq12d | |
38 | 17 28 37 | 3eqtr4d | |