| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgh.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( exp ‘ ( 𝐴  ·  𝑥 ) ) ) | 
						
							| 2 |  | simp1l | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | simp1r | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝑋  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 | 4 | subgss | ⊢ ( 𝑋  ∈  ( SubGrp ‘ ℂfld )  →  𝑋  ⊆  ℂ ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝑋  ⊆  ℂ ) | 
						
							| 7 |  | simp2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 8 | 6 7 | sseldd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  ℂ ) | 
						
							| 9 |  | simp3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 10 | 6 9 | sseldd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 11 | 2 8 10 | adddid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ·  ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) )  =  ( exp ‘ ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 13 | 2 8 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 14 | 2 10 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ·  𝐶 )  ∈  ℂ ) | 
						
							| 15 |  | efadd | ⊢ ( ( ( 𝐴  ·  𝐵 )  ∈  ℂ  ∧  ( 𝐴  ·  𝐶 )  ∈  ℂ )  →  ( exp ‘ ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  ·  𝐶 ) ) )  =  ( ( exp ‘ ( 𝐴  ·  𝐵 ) )  ·  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  ·  𝐶 ) ) )  =  ( ( exp ‘ ( 𝐴  ·  𝐵 ) )  ·  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 17 | 12 16 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) )  =  ( ( exp ‘ ( 𝐴  ·  𝐵 ) )  ·  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·  𝑥 )  =  ( 𝐴  ·  𝑦 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( exp ‘ ( 𝐴  ·  𝑥 ) )  =  ( exp ‘ ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 20 | 19 | cbvmptv | ⊢ ( 𝑥  ∈  𝑋  ↦  ( exp ‘ ( 𝐴  ·  𝑥 ) ) )  =  ( 𝑦  ∈  𝑋  ↦  ( exp ‘ ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 21 | 1 20 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  𝑋  ↦  ( exp ‘ ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐵  +  𝐶 )  →  ( 𝐴  ·  𝑦 )  =  ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑦  =  ( 𝐵  +  𝐶 )  →  ( exp ‘ ( 𝐴  ·  𝑦 ) )  =  ( exp ‘ ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) ) ) | 
						
							| 24 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 25 | 24 | subgcl | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ ℂfld )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 ) | 
						
							| 26 | 25 | 3adant1l | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 ) | 
						
							| 27 |  | fvexd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) )  ∈  V ) | 
						
							| 28 | 21 23 26 27 | fvmptd3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐵  +  𝐶 ) )  =  ( exp ‘ ( 𝐴  ·  ( 𝐵  +  𝐶 ) ) ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ·  𝑦 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( exp ‘ ( 𝐴  ·  𝑦 ) )  =  ( exp ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 31 |  | fvexd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( 𝐴  ·  𝐵 ) )  ∈  V ) | 
						
							| 32 | 21 30 7 31 | fvmptd3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐹 ‘ 𝐵 )  =  ( exp ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑦  =  𝐶  →  ( 𝐴  ·  𝑦 )  =  ( 𝐴  ·  𝐶 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑦  =  𝐶  →  ( exp ‘ ( 𝐴  ·  𝑦 ) )  =  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 35 |  | fvexd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( exp ‘ ( 𝐴  ·  𝐶 ) )  ∈  V ) | 
						
							| 36 | 21 34 9 35 | fvmptd3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐹 ‘ 𝐶 )  =  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 37 | 32 36 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝐵 )  ·  ( 𝐹 ‘ 𝐶 ) )  =  ( ( exp ‘ ( 𝐴  ·  𝐵 ) )  ·  ( exp ‘ ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 38 | 17 28 37 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑋  ∈  ( SubGrp ‘ ℂfld ) )  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝐵  +  𝐶 ) )  =  ( ( 𝐹 ‘ 𝐵 )  ·  ( 𝐹 ‘ 𝐶 ) ) ) |