Step |
Hyp |
Ref |
Expression |
1 |
|
clsk1indlem.k |
⊢ 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) |
2 |
|
0elpw |
⊢ ∅ ∈ 𝒫 3o |
3 |
|
eqeq1 |
⊢ ( 𝑟 = ∅ → ( 𝑟 = { ∅ } ↔ ∅ = { ∅ } ) ) |
4 |
|
id |
⊢ ( 𝑟 = ∅ → 𝑟 = ∅ ) |
5 |
3 4
|
ifbieq2d |
⊢ ( 𝑟 = ∅ → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( ∅ = { ∅ } , { ∅ , 1o } , ∅ ) ) |
6 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
7 |
6
|
a1i |
⊢ ( 𝑟 = ∅ → ∅ ≠ { ∅ } ) |
8 |
7
|
neneqd |
⊢ ( 𝑟 = ∅ → ¬ ∅ = { ∅ } ) |
9 |
8
|
iffalsed |
⊢ ( 𝑟 = ∅ → if ( ∅ = { ∅ } , { ∅ , 1o } , ∅ ) = ∅ ) |
10 |
5 9
|
eqtrd |
⊢ ( 𝑟 = ∅ → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = ∅ ) |
11 |
|
0ex |
⊢ ∅ ∈ V |
12 |
10 1 11
|
fvmpt |
⊢ ( ∅ ∈ 𝒫 3o → ( 𝐾 ‘ ∅ ) = ∅ ) |
13 |
2 12
|
ax-mp |
⊢ ( 𝐾 ‘ ∅ ) = ∅ |