| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsk1indlem.k | ⊢ 𝐾  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) | 
						
							| 2 |  | 0elpw | ⊢ ∅  ∈  𝒫  3o | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑟  =  ∅  →  ( 𝑟  =  { ∅ }  ↔  ∅  =  { ∅ } ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑟  =  ∅  →  𝑟  =  ∅ ) | 
						
							| 5 | 3 4 | ifbieq2d | ⊢ ( 𝑟  =  ∅  →  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 )  =  if ( ∅  =  { ∅ } ,  { ∅ ,  1o } ,  ∅ ) ) | 
						
							| 6 |  | 0nep0 | ⊢ ∅  ≠  { ∅ } | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑟  =  ∅  →  ∅  ≠  { ∅ } ) | 
						
							| 8 | 7 | neneqd | ⊢ ( 𝑟  =  ∅  →  ¬  ∅  =  { ∅ } ) | 
						
							| 9 | 8 | iffalsed | ⊢ ( 𝑟  =  ∅  →  if ( ∅  =  { ∅ } ,  { ∅ ,  1o } ,  ∅ )  =  ∅ ) | 
						
							| 10 | 5 9 | eqtrd | ⊢ ( 𝑟  =  ∅  →  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 )  =  ∅ ) | 
						
							| 11 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 12 | 10 1 11 | fvmpt | ⊢ ( ∅  ∈  𝒫  3o  →  ( 𝐾 ‘ ∅ )  =  ∅ ) | 
						
							| 13 | 2 12 | ax-mp | ⊢ ( 𝐾 ‘ ∅ )  =  ∅ |