Metamath Proof Explorer


Theorem clsk1indlem0

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
Assertion clsk1indlem0 ( 𝐾 ‘ ∅ ) = ∅

Proof

Step Hyp Ref Expression
1 clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
2 0elpw ∅ ∈ 𝒫 3o
3 eqeq1 ( 𝑟 = ∅ → ( 𝑟 = { ∅ } ↔ ∅ = { ∅ } ) )
4 id ( 𝑟 = ∅ → 𝑟 = ∅ )
5 3 4 ifbieq2d ( 𝑟 = ∅ → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( ∅ = { ∅ } , { ∅ , 1o } , ∅ ) )
6 0nep0 ∅ ≠ { ∅ }
7 6 a1i ( 𝑟 = ∅ → ∅ ≠ { ∅ } )
8 7 neneqd ( 𝑟 = ∅ → ¬ ∅ = { ∅ } )
9 8 iffalsed ( 𝑟 = ∅ → if ( ∅ = { ∅ } , { ∅ , 1o } , ∅ ) = ∅ )
10 5 9 eqtrd ( 𝑟 = ∅ → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = ∅ )
11 0ex ∅ ∈ V
12 10 1 11 fvmpt ( ∅ ∈ 𝒫 3o → ( 𝐾 ‘ ∅ ) = ∅ )
13 2 12 ax-mp ( 𝐾 ‘ ∅ ) = ∅