| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsk1indlem.k |  |-  K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) | 
						
							| 2 |  | 0elpw |  |-  (/) e. ~P 3o | 
						
							| 3 |  | eqeq1 |  |-  ( r = (/) -> ( r = { (/) } <-> (/) = { (/) } ) ) | 
						
							| 4 |  | id |  |-  ( r = (/) -> r = (/) ) | 
						
							| 5 | 3 4 | ifbieq2d |  |-  ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( (/) = { (/) } , { (/) , 1o } , (/) ) ) | 
						
							| 6 |  | 0nep0 |  |-  (/) =/= { (/) } | 
						
							| 7 | 6 | a1i |  |-  ( r = (/) -> (/) =/= { (/) } ) | 
						
							| 8 | 7 | neneqd |  |-  ( r = (/) -> -. (/) = { (/) } ) | 
						
							| 9 | 8 | iffalsed |  |-  ( r = (/) -> if ( (/) = { (/) } , { (/) , 1o } , (/) ) = (/) ) | 
						
							| 10 | 5 9 | eqtrd |  |-  ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = (/) ) | 
						
							| 11 |  | 0ex |  |-  (/) e. _V | 
						
							| 12 | 10 1 11 | fvmpt |  |-  ( (/) e. ~P 3o -> ( K ` (/) ) = (/) ) | 
						
							| 13 | 2 12 | ax-mp |  |-  ( K ` (/) ) = (/) |