| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsk1indlem.k |
|- K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) |
| 2 |
|
0elpw |
|- (/) e. ~P 3o |
| 3 |
|
eqeq1 |
|- ( r = (/) -> ( r = { (/) } <-> (/) = { (/) } ) ) |
| 4 |
|
id |
|- ( r = (/) -> r = (/) ) |
| 5 |
3 4
|
ifbieq2d |
|- ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( (/) = { (/) } , { (/) , 1o } , (/) ) ) |
| 6 |
|
0nep0 |
|- (/) =/= { (/) } |
| 7 |
6
|
a1i |
|- ( r = (/) -> (/) =/= { (/) } ) |
| 8 |
7
|
neneqd |
|- ( r = (/) -> -. (/) = { (/) } ) |
| 9 |
8
|
iffalsed |
|- ( r = (/) -> if ( (/) = { (/) } , { (/) , 1o } , (/) ) = (/) ) |
| 10 |
5 9
|
eqtrd |
|- ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = (/) ) |
| 11 |
|
0ex |
|- (/) e. _V |
| 12 |
10 1 11
|
fvmpt |
|- ( (/) e. ~P 3o -> ( K ` (/) ) = (/) ) |
| 13 |
2 12
|
ax-mp |
|- ( K ` (/) ) = (/) |