Metamath Proof Explorer


Theorem clsk1indlem0

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k
|- K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) )
Assertion clsk1indlem0
|- ( K ` (/) ) = (/)

Proof

Step Hyp Ref Expression
1 clsk1indlem.k
 |-  K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) )
2 0elpw
 |-  (/) e. ~P 3o
3 eqeq1
 |-  ( r = (/) -> ( r = { (/) } <-> (/) = { (/) } ) )
4 id
 |-  ( r = (/) -> r = (/) )
5 3 4 ifbieq2d
 |-  ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( (/) = { (/) } , { (/) , 1o } , (/) ) )
6 0nep0
 |-  (/) =/= { (/) }
7 6 a1i
 |-  ( r = (/) -> (/) =/= { (/) } )
8 7 neneqd
 |-  ( r = (/) -> -. (/) = { (/) } )
9 8 iffalsed
 |-  ( r = (/) -> if ( (/) = { (/) } , { (/) , 1o } , (/) ) = (/) )
10 5 9 eqtrd
 |-  ( r = (/) -> if ( r = { (/) } , { (/) , 1o } , r ) = (/) )
11 0ex
 |-  (/) e. _V
12 10 1 11 fvmpt
 |-  ( (/) e. ~P 3o -> ( K ` (/) ) = (/) )
13 2 12 ax-mp
 |-  ( K ` (/) ) = (/)