Metamath Proof Explorer


Theorem clsk1indlem0

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
Assertion clsk1indlem0 K =

Proof

Step Hyp Ref Expression
1 clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
2 0elpw 𝒫 3 𝑜
3 eqeq1 r = r = =
4 id r = r =
5 3 4 ifbieq2d r = if r = 1 𝑜 r = if = 1 𝑜
6 0nep0
7 6 a1i r =
8 7 neneqd r = ¬ =
9 8 iffalsed r = if = 1 𝑜 =
10 5 9 eqtrd r = if r = 1 𝑜 r =
11 0ex V
12 10 1 11 fvmpt 𝒫 3 𝑜 K =
13 2 12 ax-mp K =