Metamath Proof Explorer


Theorem clsk1indlem2

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k
|- K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) )
Assertion clsk1indlem2
|- A. s e. ~P 3o s C_ ( K ` s )

Proof

Step Hyp Ref Expression
1 clsk1indlem.k
 |-  K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) )
2 id
 |-  ( s = { (/) } -> s = { (/) } )
3 snsspr1
 |-  { (/) } C_ { (/) , 1o }
4 2 3 eqsstrdi
 |-  ( s = { (/) } -> s C_ { (/) , 1o } )
5 4 ancli
 |-  ( s = { (/) } -> ( s = { (/) } /\ s C_ { (/) , 1o } ) )
6 5 con3i
 |-  ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> -. s = { (/) } )
7 ssid
 |-  s C_ s
8 6 7 jctir
 |-  ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> ( -. s = { (/) } /\ s C_ s ) )
9 8 orri
 |-  ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) )
10 9 a1i
 |-  ( s e. ~P 3o -> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) )
11 sseq2
 |-  ( if ( s = { (/) } , { (/) , 1o } , s ) = { (/) , 1o } -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ { (/) , 1o } ) )
12 sseq2
 |-  ( if ( s = { (/) } , { (/) , 1o } , s ) = s -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ s ) )
13 11 12 elimif
 |-  ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) )
14 10 13 sylibr
 |-  ( s e. ~P 3o -> s C_ if ( s = { (/) } , { (/) , 1o } , s ) )
15 eqeq1
 |-  ( r = s -> ( r = { (/) } <-> s = { (/) } ) )
16 id
 |-  ( r = s -> r = s )
17 15 16 ifbieq2d
 |-  ( r = s -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( s = { (/) } , { (/) , 1o } , s ) )
18 prex
 |-  { (/) , 1o } e. _V
19 vex
 |-  s e. _V
20 18 19 ifex
 |-  if ( s = { (/) } , { (/) , 1o } , s ) e. _V
21 17 1 20 fvmpt
 |-  ( s e. ~P 3o -> ( K ` s ) = if ( s = { (/) } , { (/) , 1o } , s ) )
22 14 21 sseqtrrd
 |-  ( s e. ~P 3o -> s C_ ( K ` s ) )
23 22 rgen
 |-  A. s e. ~P 3o s C_ ( K ` s )