| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsk1indlem.k |  |-  K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) | 
						
							| 2 |  | id |  |-  ( s = { (/) } -> s = { (/) } ) | 
						
							| 3 |  | snsspr1 |  |-  { (/) } C_ { (/) , 1o } | 
						
							| 4 | 2 3 | eqsstrdi |  |-  ( s = { (/) } -> s C_ { (/) , 1o } ) | 
						
							| 5 | 4 | ancli |  |-  ( s = { (/) } -> ( s = { (/) } /\ s C_ { (/) , 1o } ) ) | 
						
							| 6 | 5 | con3i |  |-  ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> -. s = { (/) } ) | 
						
							| 7 |  | ssid |  |-  s C_ s | 
						
							| 8 | 6 7 | jctir |  |-  ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> ( -. s = { (/) } /\ s C_ s ) ) | 
						
							| 9 | 8 | orri |  |-  ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) | 
						
							| 10 | 9 | a1i |  |-  ( s e. ~P 3o -> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) ) | 
						
							| 11 |  | sseq2 |  |-  ( if ( s = { (/) } , { (/) , 1o } , s ) = { (/) , 1o } -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ { (/) , 1o } ) ) | 
						
							| 12 |  | sseq2 |  |-  ( if ( s = { (/) } , { (/) , 1o } , s ) = s -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ s ) ) | 
						
							| 13 | 11 12 | elimif |  |-  ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) ) | 
						
							| 14 | 10 13 | sylibr |  |-  ( s e. ~P 3o -> s C_ if ( s = { (/) } , { (/) , 1o } , s ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( r = s -> ( r = { (/) } <-> s = { (/) } ) ) | 
						
							| 16 |  | id |  |-  ( r = s -> r = s ) | 
						
							| 17 | 15 16 | ifbieq2d |  |-  ( r = s -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( s = { (/) } , { (/) , 1o } , s ) ) | 
						
							| 18 |  | prex |  |-  { (/) , 1o } e. _V | 
						
							| 19 |  | vex |  |-  s e. _V | 
						
							| 20 | 18 19 | ifex |  |-  if ( s = { (/) } , { (/) , 1o } , s ) e. _V | 
						
							| 21 | 17 1 20 | fvmpt |  |-  ( s e. ~P 3o -> ( K ` s ) = if ( s = { (/) } , { (/) , 1o } , s ) ) | 
						
							| 22 | 14 21 | sseqtrrd |  |-  ( s e. ~P 3o -> s C_ ( K ` s ) ) | 
						
							| 23 | 22 | rgen |  |-  A. s e. ~P 3o s C_ ( K ` s ) |