Step |
Hyp |
Ref |
Expression |
1 |
|
clsk1indlem.k |
|- K = ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) |
2 |
|
id |
|- ( s = { (/) } -> s = { (/) } ) |
3 |
|
snsspr1 |
|- { (/) } C_ { (/) , 1o } |
4 |
2 3
|
eqsstrdi |
|- ( s = { (/) } -> s C_ { (/) , 1o } ) |
5 |
4
|
ancli |
|- ( s = { (/) } -> ( s = { (/) } /\ s C_ { (/) , 1o } ) ) |
6 |
5
|
con3i |
|- ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> -. s = { (/) } ) |
7 |
|
ssid |
|- s C_ s |
8 |
6 7
|
jctir |
|- ( -. ( s = { (/) } /\ s C_ { (/) , 1o } ) -> ( -. s = { (/) } /\ s C_ s ) ) |
9 |
8
|
orri |
|- ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) |
10 |
9
|
a1i |
|- ( s e. ~P 3o -> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) ) |
11 |
|
sseq2 |
|- ( if ( s = { (/) } , { (/) , 1o } , s ) = { (/) , 1o } -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ { (/) , 1o } ) ) |
12 |
|
sseq2 |
|- ( if ( s = { (/) } , { (/) , 1o } , s ) = s -> ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> s C_ s ) ) |
13 |
11 12
|
elimif |
|- ( s C_ if ( s = { (/) } , { (/) , 1o } , s ) <-> ( ( s = { (/) } /\ s C_ { (/) , 1o } ) \/ ( -. s = { (/) } /\ s C_ s ) ) ) |
14 |
10 13
|
sylibr |
|- ( s e. ~P 3o -> s C_ if ( s = { (/) } , { (/) , 1o } , s ) ) |
15 |
|
eqeq1 |
|- ( r = s -> ( r = { (/) } <-> s = { (/) } ) ) |
16 |
|
id |
|- ( r = s -> r = s ) |
17 |
15 16
|
ifbieq2d |
|- ( r = s -> if ( r = { (/) } , { (/) , 1o } , r ) = if ( s = { (/) } , { (/) , 1o } , s ) ) |
18 |
|
prex |
|- { (/) , 1o } e. _V |
19 |
|
vex |
|- s e. _V |
20 |
18 19
|
ifex |
|- if ( s = { (/) } , { (/) , 1o } , s ) e. _V |
21 |
17 1 20
|
fvmpt |
|- ( s e. ~P 3o -> ( K ` s ) = if ( s = { (/) } , { (/) , 1o } , s ) ) |
22 |
14 21
|
sseqtrrd |
|- ( s e. ~P 3o -> s C_ ( K ` s ) ) |
23 |
22
|
rgen |
|- A. s e. ~P 3o s C_ ( K ` s ) |