Metamath Proof Explorer


Theorem clsk1indlem2

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
Assertion clsk1indlem2 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝐾𝑠 )

Proof

Step Hyp Ref Expression
1 clsk1indlem.k 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) )
2 id ( 𝑠 = { ∅ } → 𝑠 = { ∅ } )
3 snsspr1 { ∅ } ⊆ { ∅ , 1o }
4 2 3 eqsstrdi ( 𝑠 = { ∅ } → 𝑠 ⊆ { ∅ , 1o } )
5 4 ancli ( 𝑠 = { ∅ } → ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) )
6 5 con3i ( ¬ ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) → ¬ 𝑠 = { ∅ } )
7 ssid 𝑠𝑠
8 6 7 jctir ( ¬ ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) → ( ¬ 𝑠 = { ∅ } ∧ 𝑠𝑠 ) )
9 8 orri ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠𝑠 ) )
10 9 a1i ( 𝑠 ∈ 𝒫 3o → ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠𝑠 ) ) )
11 sseq2 ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) = { ∅ , 1o } → ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ 𝑠 ⊆ { ∅ , 1o } ) )
12 sseq2 ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) = 𝑠 → ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ 𝑠𝑠 ) )
13 11 12 elimif ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠𝑠 ) ) )
14 10 13 sylibr ( 𝑠 ∈ 𝒫 3o𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) )
15 eqeq1 ( 𝑟 = 𝑠 → ( 𝑟 = { ∅ } ↔ 𝑠 = { ∅ } ) )
16 id ( 𝑟 = 𝑠𝑟 = 𝑠 )
17 15 16 ifbieq2d ( 𝑟 = 𝑠 → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) )
18 prex { ∅ , 1o } ∈ V
19 vex 𝑠 ∈ V
20 18 19 ifex if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∈ V
21 17 1 20 fvmpt ( 𝑠 ∈ 𝒫 3o → ( 𝐾𝑠 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) )
22 14 21 sseqtrrd ( 𝑠 ∈ 𝒫 3o𝑠 ⊆ ( 𝐾𝑠 ) )
23 22 rgen 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝐾𝑠 )