Step |
Hyp |
Ref |
Expression |
1 |
|
clsk1indlem.k |
⊢ 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) |
2 |
|
id |
⊢ ( 𝑠 = { ∅ } → 𝑠 = { ∅ } ) |
3 |
|
snsspr1 |
⊢ { ∅ } ⊆ { ∅ , 1o } |
4 |
2 3
|
eqsstrdi |
⊢ ( 𝑠 = { ∅ } → 𝑠 ⊆ { ∅ , 1o } ) |
5 |
4
|
ancli |
⊢ ( 𝑠 = { ∅ } → ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ) |
6 |
5
|
con3i |
⊢ ( ¬ ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) → ¬ 𝑠 = { ∅ } ) |
7 |
|
ssid |
⊢ 𝑠 ⊆ 𝑠 |
8 |
6 7
|
jctir |
⊢ ( ¬ ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) → ( ¬ 𝑠 = { ∅ } ∧ 𝑠 ⊆ 𝑠 ) ) |
9 |
8
|
orri |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠 ⊆ 𝑠 ) ) |
10 |
9
|
a1i |
⊢ ( 𝑠 ∈ 𝒫 3o → ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠 ⊆ 𝑠 ) ) ) |
11 |
|
sseq2 |
⊢ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) = { ∅ , 1o } → ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ 𝑠 ⊆ { ∅ , 1o } ) ) |
12 |
|
sseq2 |
⊢ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) = 𝑠 → ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ 𝑠 ⊆ 𝑠 ) ) |
13 |
11 12
|
elimif |
⊢ ( 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ ( ( 𝑠 = { ∅ } ∧ 𝑠 ⊆ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑠 ⊆ 𝑠 ) ) ) |
14 |
10 13
|
sylibr |
⊢ ( 𝑠 ∈ 𝒫 3o → 𝑠 ⊆ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 = { ∅ } ↔ 𝑠 = { ∅ } ) ) |
16 |
|
id |
⊢ ( 𝑟 = 𝑠 → 𝑟 = 𝑠 ) |
17 |
15 16
|
ifbieq2d |
⊢ ( 𝑟 = 𝑠 → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
18 |
|
prex |
⊢ { ∅ , 1o } ∈ V |
19 |
|
vex |
⊢ 𝑠 ∈ V |
20 |
18 19
|
ifex |
⊢ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∈ V |
21 |
17 1 20
|
fvmpt |
⊢ ( 𝑠 ∈ 𝒫 3o → ( 𝐾 ‘ 𝑠 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
22 |
14 21
|
sseqtrrd |
⊢ ( 𝑠 ∈ 𝒫 3o → 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) |
23 |
22
|
rgen |
⊢ ∀ 𝑠 ∈ 𝒫 3o 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) |