| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsk1indlem.k | ⊢ 𝐾  =  ( 𝑟  ∈  𝒫  3o  ↦  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑠  =  { ∅ }  →  𝑠  =  { ∅ } ) | 
						
							| 3 |  | snsspr1 | ⊢ { ∅ }  ⊆  { ∅ ,  1o } | 
						
							| 4 | 2 3 | eqsstrdi | ⊢ ( 𝑠  =  { ∅ }  →  𝑠  ⊆  { ∅ ,  1o } ) | 
						
							| 5 | 4 | ancli | ⊢ ( 𝑠  =  { ∅ }  →  ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } ) ) | 
						
							| 6 | 5 | con3i | ⊢ ( ¬  ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } )  →  ¬  𝑠  =  { ∅ } ) | 
						
							| 7 |  | ssid | ⊢ 𝑠  ⊆  𝑠 | 
						
							| 8 | 6 7 | jctir | ⊢ ( ¬  ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } )  →  ( ¬  𝑠  =  { ∅ }  ∧  𝑠  ⊆  𝑠 ) ) | 
						
							| 9 | 8 | orri | ⊢ ( ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } )  ∨  ( ¬  𝑠  =  { ∅ }  ∧  𝑠  ⊆  𝑠 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑠  ∈  𝒫  3o  →  ( ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } )  ∨  ( ¬  𝑠  =  { ∅ }  ∧  𝑠  ⊆  𝑠 ) ) ) | 
						
							| 11 |  | sseq2 | ⊢ ( if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  =  { ∅ ,  1o }  →  ( 𝑠  ⊆  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  ↔  𝑠  ⊆  { ∅ ,  1o } ) ) | 
						
							| 12 |  | sseq2 | ⊢ ( if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  =  𝑠  →  ( 𝑠  ⊆  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  ↔  𝑠  ⊆  𝑠 ) ) | 
						
							| 13 | 11 12 | elimif | ⊢ ( 𝑠  ⊆  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  ↔  ( ( 𝑠  =  { ∅ }  ∧  𝑠  ⊆  { ∅ ,  1o } )  ∨  ( ¬  𝑠  =  { ∅ }  ∧  𝑠  ⊆  𝑠 ) ) ) | 
						
							| 14 | 10 13 | sylibr | ⊢ ( 𝑠  ∈  𝒫  3o  →  𝑠  ⊆  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑟  =  𝑠  →  ( 𝑟  =  { ∅ }  ↔  𝑠  =  { ∅ } ) ) | 
						
							| 16 |  | id | ⊢ ( 𝑟  =  𝑠  →  𝑟  =  𝑠 ) | 
						
							| 17 | 15 16 | ifbieq2d | ⊢ ( 𝑟  =  𝑠  →  if ( 𝑟  =  { ∅ } ,  { ∅ ,  1o } ,  𝑟 )  =  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 ) ) | 
						
							| 18 |  | prex | ⊢ { ∅ ,  1o }  ∈  V | 
						
							| 19 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 20 | 18 19 | ifex | ⊢ if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 )  ∈  V | 
						
							| 21 | 17 1 20 | fvmpt | ⊢ ( 𝑠  ∈  𝒫  3o  →  ( 𝐾 ‘ 𝑠 )  =  if ( 𝑠  =  { ∅ } ,  { ∅ ,  1o } ,  𝑠 ) ) | 
						
							| 22 | 14 21 | sseqtrrd | ⊢ ( 𝑠  ∈  𝒫  3o  →  𝑠  ⊆  ( 𝐾 ‘ 𝑠 ) ) | 
						
							| 23 | 22 | rgen | ⊢ ∀ 𝑠  ∈  𝒫  3o 𝑠  ⊆  ( 𝐾 ‘ 𝑠 ) |