| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsk1indlem.k |
⊢ 𝐾 = ( 𝑟 ∈ 𝒫 3o ↦ if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) ) |
| 2 |
|
elif |
⊢ ( 𝑥 ∈ if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ↔ ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) ) |
| 3 |
|
uneq12 |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( 𝑠 ∪ 𝑡 ) = ( { ∅ } ∪ { ∅ } ) ) |
| 4 |
|
unidm |
⊢ ( { ∅ } ∪ { ∅ } ) = { ∅ } |
| 5 |
3 4
|
eqtrdi |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( 𝑠 ∪ 𝑡 ) = { ∅ } ) |
| 6 |
|
an3 |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∧ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) → ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) |
| 7 |
6
|
orcd |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∧ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ) |
| 8 |
7
|
orcd |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∧ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 9 |
8
|
ex |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 10 |
|
pm2.24 |
⊢ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } → ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } → ( 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 11 |
10
|
impd |
⊢ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } → ( ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 12 |
9 11
|
jaao |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∧ ( 𝑠 ∪ 𝑡 ) = { ∅ } ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 13 |
5 12
|
mpdan |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 15 |
|
uneqsn |
⊢ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ↔ ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ∨ ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) ) ) |
| 16 |
|
df-3or |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ∨ ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) ) ↔ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ) ∨ ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) ) ) |
| 17 |
15 16
|
bitri |
⊢ ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ↔ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ) ∨ ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) ) ) |
| 18 |
|
pm2.21 |
⊢ ( ¬ 𝑠 = { ∅ } → ( 𝑠 = { ∅ } → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 19 |
18
|
adantrd |
⊢ ( ¬ 𝑠 = { ∅ } → ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 20 |
18
|
adantrd |
⊢ ( ¬ 𝑠 = { ∅ } → ( ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 21 |
19 20
|
jaod |
⊢ ( ¬ 𝑠 = { ∅ } → ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 23 |
|
pm2.21 |
⊢ ( ¬ 𝑡 = { ∅ } → ( 𝑡 = { ∅ } → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( 𝑡 = { ∅ } → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 25 |
24
|
adantld |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 26 |
22 25
|
jaod |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( 𝑠 = { ∅ } ∧ 𝑡 = ∅ ) ) ∨ ( 𝑠 = ∅ ∧ 𝑡 = { ∅ } ) ) → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 27 |
17 26
|
biimtrid |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 ∪ 𝑡 ) = { ∅ } → ( 𝑥 ∈ { ∅ , 1o } → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 28 |
27
|
impd |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 29 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ↔ ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) ) |
| 30 |
29
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) → ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) ) |
| 31 |
30
|
adantl |
⊢ ( ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) → ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) ) |
| 32 |
|
andi |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) ) ↔ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑠 ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 33 |
|
simpl |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ¬ 𝑠 = { ∅ } ) |
| 34 |
33
|
anim1i |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑠 ) → ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) |
| 35 |
|
simpr |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ¬ 𝑡 = { ∅ } ) |
| 36 |
35
|
anim1i |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑡 ) → ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) |
| 37 |
34 36
|
orim12i |
⊢ ( ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑠 ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ 𝑥 ∈ 𝑡 ) ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 38 |
32 37
|
sylbi |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 39 |
31 38
|
sylan2 |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 40 |
39
|
olcd |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 41 |
|
or4 |
⊢ ( ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ↔ ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 42 |
40 41
|
sylib |
⊢ ( ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∧ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 43 |
42
|
ex |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 44 |
28 43
|
jaod |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 45 |
44
|
a1i |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 46 |
14 45
|
jaod |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 47 |
|
orc |
⊢ ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 48 |
47
|
expcom |
⊢ ( 𝑥 ∈ { ∅ , 1o } → ( 𝑠 = { ∅ } → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 49 |
48
|
adantrd |
⊢ ( 𝑥 ∈ { ∅ , 1o } → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 51 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑠 ∧ 𝑠 = { ∅ } ) → 𝑠 = { ∅ } ) |
| 52 |
|
id |
⊢ ( 𝑠 = { ∅ } → 𝑠 = { ∅ } ) |
| 53 |
|
snsspr1 |
⊢ { ∅ } ⊆ { ∅ , 1o } |
| 54 |
52 53
|
eqsstrdi |
⊢ ( 𝑠 = { ∅ } → 𝑠 ⊆ { ∅ , 1o } ) |
| 55 |
54
|
sseld |
⊢ ( 𝑠 = { ∅ } → ( 𝑥 ∈ 𝑠 → 𝑥 ∈ { ∅ , 1o } ) ) |
| 56 |
55
|
impcom |
⊢ ( ( 𝑥 ∈ 𝑠 ∧ 𝑠 = { ∅ } ) → 𝑥 ∈ { ∅ , 1o } ) |
| 57 |
51 56
|
jca |
⊢ ( ( 𝑥 ∈ 𝑠 ∧ 𝑠 = { ∅ } ) → ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) |
| 58 |
57
|
orcd |
⊢ ( ( 𝑥 ∈ 𝑠 ∧ 𝑠 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 59 |
58
|
ex |
⊢ ( 𝑥 ∈ 𝑠 → ( 𝑠 = { ∅ } → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 60 |
|
olc |
⊢ ( ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 61 |
60
|
expcom |
⊢ ( 𝑥 ∈ 𝑡 → ( ¬ 𝑡 = { ∅ } → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 62 |
59 61
|
jaoa |
⊢ ( ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 63 |
29 62
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 65 |
50 64
|
jaoi |
⊢ ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) → ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 66 |
|
olc |
⊢ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) |
| 67 |
66
|
expcom |
⊢ ( 𝑥 ∈ { ∅ , 1o } → ( 𝑡 = { ∅ } → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( 𝑡 = { ∅ } → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 69 |
68
|
adantrd |
⊢ ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) → ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 70 |
|
id |
⊢ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) → ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) |
| 71 |
70
|
ex |
⊢ ( ¬ 𝑠 = { ∅ } → ( 𝑥 ∈ 𝑠 → ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( 𝑥 ∈ 𝑠 → ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ) |
| 73 |
|
id |
⊢ ( 𝑡 = { ∅ } → 𝑡 = { ∅ } ) |
| 74 |
73 53
|
eqsstrdi |
⊢ ( 𝑡 = { ∅ } → 𝑡 ⊆ { ∅ , 1o } ) |
| 75 |
74
|
sseld |
⊢ ( 𝑡 = { ∅ } → ( 𝑥 ∈ 𝑡 → 𝑥 ∈ { ∅ , 1o } ) ) |
| 76 |
75
|
anc2li |
⊢ ( 𝑡 = { ∅ } → ( 𝑥 ∈ 𝑡 → ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( 𝑥 ∈ 𝑡 → ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) |
| 78 |
72 77
|
orim12d |
⊢ ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 79 |
78
|
com12 |
⊢ ( ( 𝑥 ∈ 𝑠 ∨ 𝑥 ∈ 𝑡 ) → ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 80 |
29 79
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) → ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) → ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 82 |
69 81
|
jaoi |
⊢ ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) → ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) |
| 83 |
65 82
|
orim12d |
⊢ ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) ) |
| 84 |
83
|
com12 |
⊢ ( ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ) ) |
| 85 |
|
or42 |
⊢ ( ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ∨ ( ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ∨ ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ) ) ↔ ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 86 |
84 85
|
imbitrdi |
⊢ ( ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 87 |
86
|
a1i |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) ) |
| 88 |
|
4exmid |
⊢ ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ) ∨ ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) ) |
| 89 |
88
|
a1i |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑡 = { ∅ } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ) ∨ ( ( 𝑠 = { ∅ } ∧ ¬ 𝑡 = { ∅ } ) ∨ ( 𝑡 = { ∅ } ∧ ¬ 𝑠 = { ∅ } ) ) ) ) |
| 90 |
46 87 89
|
mpjaod |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( ( ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ ( 𝑠 ∪ 𝑡 ) = { ∅ } ∧ 𝑥 ∈ ( 𝑠 ∪ 𝑡 ) ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 91 |
2 90
|
biimtrid |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝑥 ∈ if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) → ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) ) |
| 92 |
|
elun |
⊢ ( 𝑥 ∈ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∪ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ↔ ( 𝑥 ∈ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∨ 𝑥 ∈ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ) |
| 93 |
|
elif |
⊢ ( 𝑥 ∈ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ↔ ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ) |
| 94 |
|
elif |
⊢ ( 𝑥 ∈ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ↔ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) |
| 95 |
93 94
|
orbi12i |
⊢ ( ( 𝑥 ∈ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∨ 𝑥 ∈ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ↔ ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
| 96 |
92 95
|
sylbbr |
⊢ ( ( ( ( 𝑠 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑠 = { ∅ } ∧ 𝑥 ∈ 𝑠 ) ) ∨ ( ( 𝑡 = { ∅ } ∧ 𝑥 ∈ { ∅ , 1o } ) ∨ ( ¬ 𝑡 = { ∅ } ∧ 𝑥 ∈ 𝑡 ) ) ) → 𝑥 ∈ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∪ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ) |
| 97 |
91 96
|
syl6 |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝑥 ∈ if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) → 𝑥 ∈ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∪ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ) ) |
| 98 |
97
|
ssrdv |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ⊆ ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∪ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ) |
| 99 |
|
pwuncl |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 3o ) |
| 100 |
|
eqeq1 |
⊢ ( 𝑟 = ( 𝑠 ∪ 𝑡 ) → ( 𝑟 = { ∅ } ↔ ( 𝑠 ∪ 𝑡 ) = { ∅ } ) ) |
| 101 |
|
id |
⊢ ( 𝑟 = ( 𝑠 ∪ 𝑡 ) → 𝑟 = ( 𝑠 ∪ 𝑡 ) ) |
| 102 |
100 101
|
ifbieq2d |
⊢ ( 𝑟 = ( 𝑠 ∪ 𝑡 ) → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ) |
| 103 |
|
prex |
⊢ { ∅ , 1o } ∈ V |
| 104 |
|
vex |
⊢ 𝑠 ∈ V |
| 105 |
|
vex |
⊢ 𝑡 ∈ V |
| 106 |
104 105
|
unex |
⊢ ( 𝑠 ∪ 𝑡 ) ∈ V |
| 107 |
103 106
|
ifex |
⊢ if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ∈ V |
| 108 |
102 1 107
|
fvmpt |
⊢ ( ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 3o → ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ) |
| 109 |
99 108
|
syl |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = if ( ( 𝑠 ∪ 𝑡 ) = { ∅ } , { ∅ , 1o } , ( 𝑠 ∪ 𝑡 ) ) ) |
| 110 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 = { ∅ } ↔ 𝑠 = { ∅ } ) ) |
| 111 |
|
id |
⊢ ( 𝑟 = 𝑠 → 𝑟 = 𝑠 ) |
| 112 |
110 111
|
ifbieq2d |
⊢ ( 𝑟 = 𝑠 → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
| 113 |
103 104
|
ifex |
⊢ if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∈ V |
| 114 |
112 1 113
|
fvmpt |
⊢ ( 𝑠 ∈ 𝒫 3o → ( 𝐾 ‘ 𝑠 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝐾 ‘ 𝑠 ) = if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ) |
| 116 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑡 → ( 𝑟 = { ∅ } ↔ 𝑡 = { ∅ } ) ) |
| 117 |
|
id |
⊢ ( 𝑟 = 𝑡 → 𝑟 = 𝑡 ) |
| 118 |
116 117
|
ifbieq2d |
⊢ ( 𝑟 = 𝑡 → if ( 𝑟 = { ∅ } , { ∅ , 1o } , 𝑟 ) = if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) |
| 119 |
103 105
|
ifex |
⊢ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ∈ V |
| 120 |
118 1 119
|
fvmpt |
⊢ ( 𝑡 ∈ 𝒫 3o → ( 𝐾 ‘ 𝑡 ) = if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) |
| 121 |
120
|
adantl |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝐾 ‘ 𝑡 ) = if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) |
| 122 |
115 121
|
uneq12d |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) = ( if ( 𝑠 = { ∅ } , { ∅ , 1o } , 𝑠 ) ∪ if ( 𝑡 = { ∅ } , { ∅ , 1o } , 𝑡 ) ) ) |
| 123 |
98 109 122
|
3sstr4d |
⊢ ( ( 𝑠 ∈ 𝒫 3o ∧ 𝑡 ∈ 𝒫 3o ) → ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) |
| 124 |
123
|
rgen2 |
⊢ ∀ 𝑠 ∈ 𝒫 3o ∀ 𝑡 ∈ 𝒫 3o ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) |