Metamath Proof Explorer


Theorem clsk1indlem3

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K3 property of being sub-linear. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
Assertion clsk1indlem3 s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s t K s K t

Proof

Step Hyp Ref Expression
1 clsk1indlem.k K = r 𝒫 3 𝑜 if r = 1 𝑜 r
2 elif x if s t = 1 𝑜 s t s t = x 1 𝑜 ¬ s t = x s t
3 uneq12 s = t = s t =
4 unidm =
5 3 4 eqtrdi s = t = s t =
6 an3 s = t = s t = x 1 𝑜 s = x 1 𝑜
7 6 orcd s = t = s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s
8 7 orcd s = t = s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
9 8 ex s = t = s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
10 pm2.24 s t = ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
11 10 impd s t = ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
12 9 11 jaao s = t = s t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
13 5 12 mpdan s = t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
14 13 a1i s 𝒫 3 𝑜 t 𝒫 3 𝑜 s = t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
15 uneqsn s t = s = t = s = t = s = t =
16 df-3or s = t = s = t = s = t = s = t = s = t = s = t =
17 15 16 bitri s t = s = t = s = t = s = t =
18 pm2.21 ¬ s = s = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
19 18 adantrd ¬ s = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
20 18 adantrd ¬ s = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
21 19 20 jaod ¬ s = s = t = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
22 21 adantr ¬ s = ¬ t = s = t = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
23 pm2.21 ¬ t = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
24 23 adantl ¬ s = ¬ t = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
25 24 adantld ¬ s = ¬ t = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
26 22 25 jaod ¬ s = ¬ t = s = t = s = t = s = t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
27 17 26 syl5bi ¬ s = ¬ t = s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
28 27 impd ¬ s = ¬ t = s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
29 elun x s t x s x t
30 29 biimpi x s t x s x t
31 30 adantl ¬ s t = x s t x s x t
32 andi ¬ s = ¬ t = x s x t ¬ s = ¬ t = x s ¬ s = ¬ t = x t
33 simpl ¬ s = ¬ t = ¬ s =
34 33 anim1i ¬ s = ¬ t = x s ¬ s = x s
35 simpr ¬ s = ¬ t = ¬ t =
36 35 anim1i ¬ s = ¬ t = x t ¬ t = x t
37 34 36 orim12i ¬ s = ¬ t = x s ¬ s = ¬ t = x t ¬ s = x s ¬ t = x t
38 32 37 sylbi ¬ s = ¬ t = x s x t ¬ s = x s ¬ t = x t
39 31 38 sylan2 ¬ s = ¬ t = ¬ s t = x s t ¬ s = x s ¬ t = x t
40 39 olcd ¬ s = ¬ t = ¬ s t = x s t s = x 1 𝑜 t = x 1 𝑜 ¬ s = x s ¬ t = x t
41 or4 s = x 1 𝑜 t = x 1 𝑜 ¬ s = x s ¬ t = x t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
42 40 41 sylib ¬ s = ¬ t = ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
43 42 ex ¬ s = ¬ t = ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
44 28 43 jaod ¬ s = ¬ t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
45 44 a1i s 𝒫 3 𝑜 t 𝒫 3 𝑜 ¬ s = ¬ t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
46 14 45 jaod s 𝒫 3 𝑜 t 𝒫 3 𝑜 s = t = ¬ s = ¬ t = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
47 orc s = x 1 𝑜 s = x 1 𝑜 ¬ t = x t
48 47 expcom x 1 𝑜 s = s = x 1 𝑜 ¬ t = x t
49 48 adantrd x 1 𝑜 s = ¬ t = s = x 1 𝑜 ¬ t = x t
50 49 adantl s t = x 1 𝑜 s = ¬ t = s = x 1 𝑜 ¬ t = x t
51 simpr x s s = s =
52 id s = s =
53 snsspr1 1 𝑜
54 52 53 eqsstrdi s = s 1 𝑜
55 54 sseld s = x s x 1 𝑜
56 55 impcom x s s = x 1 𝑜
57 51 56 jca x s s = s = x 1 𝑜
58 57 orcd x s s = s = x 1 𝑜 ¬ t = x t
59 58 ex x s s = s = x 1 𝑜 ¬ t = x t
60 olc ¬ t = x t s = x 1 𝑜 ¬ t = x t
61 60 expcom x t ¬ t = s = x 1 𝑜 ¬ t = x t
62 59 61 jaoa x s x t s = ¬ t = s = x 1 𝑜 ¬ t = x t
63 29 62 sylbi x s t s = ¬ t = s = x 1 𝑜 ¬ t = x t
64 63 adantl ¬ s t = x s t s = ¬ t = s = x 1 𝑜 ¬ t = x t
65 50 64 jaoi s t = x 1 𝑜 ¬ s t = x s t s = ¬ t = s = x 1 𝑜 ¬ t = x t
66 olc t = x 1 𝑜 ¬ s = x s t = x 1 𝑜
67 66 expcom x 1 𝑜 t = ¬ s = x s t = x 1 𝑜
68 67 adantl s t = x 1 𝑜 t = ¬ s = x s t = x 1 𝑜
69 68 adantrd s t = x 1 𝑜 t = ¬ s = ¬ s = x s t = x 1 𝑜
70 id ¬ s = x s ¬ s = x s
71 70 ex ¬ s = x s ¬ s = x s
72 71 adantl t = ¬ s = x s ¬ s = x s
73 id t = t =
74 73 53 eqsstrdi t = t 1 𝑜
75 74 sseld t = x t x 1 𝑜
76 75 anc2li t = x t t = x 1 𝑜
77 76 adantr t = ¬ s = x t t = x 1 𝑜
78 72 77 orim12d t = ¬ s = x s x t ¬ s = x s t = x 1 𝑜
79 78 com12 x s x t t = ¬ s = ¬ s = x s t = x 1 𝑜
80 29 79 sylbi x s t t = ¬ s = ¬ s = x s t = x 1 𝑜
81 80 adantl ¬ s t = x s t t = ¬ s = ¬ s = x s t = x 1 𝑜
82 69 81 jaoi s t = x 1 𝑜 ¬ s t = x s t t = ¬ s = ¬ s = x s t = x 1 𝑜
83 65 82 orim12d s t = x 1 𝑜 ¬ s t = x s t s = ¬ t = t = ¬ s = s = x 1 𝑜 ¬ t = x t ¬ s = x s t = x 1 𝑜
84 83 com12 s = ¬ t = t = ¬ s = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ t = x t ¬ s = x s t = x 1 𝑜
85 or42 s = x 1 𝑜 ¬ t = x t ¬ s = x s t = x 1 𝑜 s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
86 84 85 syl6ib s = ¬ t = t = ¬ s = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
87 86 a1i s 𝒫 3 𝑜 t 𝒫 3 𝑜 s = ¬ t = t = ¬ s = s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
88 4exmid s = t = ¬ s = ¬ t = s = ¬ t = t = ¬ s =
89 88 a1i s 𝒫 3 𝑜 t 𝒫 3 𝑜 s = t = ¬ s = ¬ t = s = ¬ t = t = ¬ s =
90 46 87 89 mpjaod s 𝒫 3 𝑜 t 𝒫 3 𝑜 s t = x 1 𝑜 ¬ s t = x s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
91 2 90 syl5bi s 𝒫 3 𝑜 t 𝒫 3 𝑜 x if s t = 1 𝑜 s t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
92 elun x if s = 1 𝑜 s if t = 1 𝑜 t x if s = 1 𝑜 s x if t = 1 𝑜 t
93 elif x if s = 1 𝑜 s s = x 1 𝑜 ¬ s = x s
94 elif x if t = 1 𝑜 t t = x 1 𝑜 ¬ t = x t
95 93 94 orbi12i x if s = 1 𝑜 s x if t = 1 𝑜 t s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t
96 92 95 sylbbr s = x 1 𝑜 ¬ s = x s t = x 1 𝑜 ¬ t = x t x if s = 1 𝑜 s if t = 1 𝑜 t
97 91 96 syl6 s 𝒫 3 𝑜 t 𝒫 3 𝑜 x if s t = 1 𝑜 s t x if s = 1 𝑜 s if t = 1 𝑜 t
98 97 ssrdv s 𝒫 3 𝑜 t 𝒫 3 𝑜 if s t = 1 𝑜 s t if s = 1 𝑜 s if t = 1 𝑜 t
99 pwuncl s 𝒫 3 𝑜 t 𝒫 3 𝑜 s t 𝒫 3 𝑜
100 eqeq1 r = s t r = s t =
101 id r = s t r = s t
102 100 101 ifbieq2d r = s t if r = 1 𝑜 r = if s t = 1 𝑜 s t
103 prex 1 𝑜 V
104 vex s V
105 vex t V
106 104 105 unex s t V
107 103 106 ifex if s t = 1 𝑜 s t V
108 102 1 107 fvmpt s t 𝒫 3 𝑜 K s t = if s t = 1 𝑜 s t
109 99 108 syl s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s t = if s t = 1 𝑜 s t
110 eqeq1 r = s r = s =
111 id r = s r = s
112 110 111 ifbieq2d r = s if r = 1 𝑜 r = if s = 1 𝑜 s
113 103 104 ifex if s = 1 𝑜 s V
114 112 1 113 fvmpt s 𝒫 3 𝑜 K s = if s = 1 𝑜 s
115 114 adantr s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s = if s = 1 𝑜 s
116 eqeq1 r = t r = t =
117 id r = t r = t
118 116 117 ifbieq2d r = t if r = 1 𝑜 r = if t = 1 𝑜 t
119 103 105 ifex if t = 1 𝑜 t V
120 118 1 119 fvmpt t 𝒫 3 𝑜 K t = if t = 1 𝑜 t
121 120 adantl s 𝒫 3 𝑜 t 𝒫 3 𝑜 K t = if t = 1 𝑜 t
122 115 121 uneq12d s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s K t = if s = 1 𝑜 s if t = 1 𝑜 t
123 98 109 122 3sstr4d s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s t K s K t
124 123 rgen2 s 𝒫 3 𝑜 t 𝒫 3 𝑜 K s t K s K t