| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c | ⊢ 𝐶  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) ) } | 
						
							| 2 |  | clwlkclwwlkf.a | ⊢ 𝐴  =  ( 1st  ‘ 𝑈 ) | 
						
							| 3 |  | clwlkclwwlkf.b | ⊢ 𝐵  =  ( 2nd  ‘ 𝑈 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑤  =  𝑈  →  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑈 ) ) | 
						
							| 5 | 4 2 | eqtr4di | ⊢ ( 𝑤  =  𝑈  →  ( 1st  ‘ 𝑤 )  =  𝐴 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑤  =  𝑈  →  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 7 | 6 | breq2d | ⊢ ( 𝑤  =  𝑈  →  ( 1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  ↔  1  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 1 | elrab2 | ⊢ ( 𝑈  ∈  𝐶  ↔  ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 9 |  | clwlkwlk | ⊢ ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  →  𝑈  ∈  ( Walks ‘ 𝐺 ) ) | 
						
							| 10 |  | wlkop | ⊢ ( 𝑈  ∈  ( Walks ‘ 𝐺 )  →  𝑈  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 ) | 
						
							| 11 | 2 3 | opeq12i | ⊢ 〈 𝐴 ,  𝐵 〉  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 | 
						
							| 12 | 11 | eqeq2i | ⊢ ( 𝑈  =  〈 𝐴 ,  𝐵 〉  ↔  𝑈  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉 ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑈  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  ↔  〈 𝐴 ,  𝐵 〉  ∈  ( ClWalks ‘ 𝐺 ) ) ) | 
						
							| 14 |  | df-br | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈  ( ClWalks ‘ 𝐺 ) ) | 
						
							| 15 |  | isclwlk | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵  ↔  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 16 |  | wlkcl | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 17 |  | elnnnn0c | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  →  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 16 18 | mpbirand | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  →  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  1  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 20 | 19 | bicomd | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  ↔  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  ↔  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 22 | 21 | pm5.32i | ⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  ∧  1  ≤  ( ♯ ‘ 𝐴 ) )  ↔  ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 23 |  | df-3an | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  ↔  ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 24 | 22 23 | sylbb2 | ⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  ∧  1  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) | 
						
							| 26 | 15 25 | sylbi | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) | 
						
							| 27 | 14 26 | sylbir | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( ClWalks ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) | 
						
							| 28 | 13 27 | biimtrdi | ⊢ ( 𝑈  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) ) | 
						
							| 29 | 12 28 | sylbir | ⊢ ( 𝑈  =  〈 ( 1st  ‘ 𝑈 ) ,  ( 2nd  ‘ 𝑈 ) 〉  →  ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) ) | 
						
							| 30 | 10 29 | syl | ⊢ ( 𝑈  ∈  ( Walks ‘ 𝐺 )  →  ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) ) | 
						
							| 31 | 9 30 | mpcom | ⊢ ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( 𝑈  ∈  ( ClWalks ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 33 | 8 32 | sylbi | ⊢ ( 𝑈  ∈  𝐶  →  ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵  ∧  ( 𝐵 ‘ 0 )  =  ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) |