Description: Lemma for clwlkclwwlkf . (Contributed by AV, 24-May-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwlkclwwlkf.c | |
|
clwlkclwwlkf.a | |
||
clwlkclwwlkf.b | |
||
Assertion | clwlkclwwlkflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlkf.c | |
|
2 | clwlkclwwlkf.a | |
|
3 | clwlkclwwlkf.b | |
|
4 | fveq2 | |
|
5 | 4 2 | eqtr4di | |
6 | 5 | fveq2d | |
7 | 6 | breq2d | |
8 | 7 1 | elrab2 | |
9 | clwlkwlk | |
|
10 | wlkop | |
|
11 | 2 3 | opeq12i | |
12 | 11 | eqeq2i | |
13 | eleq1 | |
|
14 | df-br | |
|
15 | isclwlk | |
|
16 | wlkcl | |
|
17 | elnnnn0c | |
|
18 | 17 | a1i | |
19 | 16 18 | mpbirand | |
20 | 19 | bicomd | |
21 | 20 | adantr | |
22 | 21 | pm5.32i | |
23 | df-3an | |
|
24 | 22 23 | sylbb2 | |
25 | 24 | ex | |
26 | 15 25 | sylbi | |
27 | 14 26 | sylbir | |
28 | 13 27 | syl6bi | |
29 | 12 28 | sylbir | |
30 | 10 29 | syl | |
31 | 9 30 | mpcom | |
32 | 31 | imp | |
33 | 8 32 | sylbi | |