Metamath Proof Explorer


Theorem clwlkclwwlkflem

Description: Lemma for clwlkclwwlkf . (Contributed by AV, 24-May-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C=wClWalksG|11stw
clwlkclwwlkf.a A=1stU
clwlkclwwlkf.b B=2ndU
Assertion clwlkclwwlkflem UCAWalksGBB0=BAA

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C=wClWalksG|11stw
2 clwlkclwwlkf.a A=1stU
3 clwlkclwwlkf.b B=2ndU
4 fveq2 w=U1stw=1stU
5 4 2 eqtr4di w=U1stw=A
6 5 fveq2d w=U1stw=A
7 6 breq2d w=U11stw1A
8 7 1 elrab2 UCUClWalksG1A
9 clwlkwlk UClWalksGUWalksG
10 wlkop UWalksGU=1stU2ndU
11 2 3 opeq12i AB=1stU2ndU
12 11 eqeq2i U=ABU=1stU2ndU
13 eleq1 U=ABUClWalksGABClWalksG
14 df-br AClWalksGBABClWalksG
15 isclwlk AClWalksGBAWalksGBB0=BA
16 wlkcl AWalksGBA0
17 elnnnn0c AA01A
18 17 a1i AWalksGBAA01A
19 16 18 mpbirand AWalksGBA1A
20 19 bicomd AWalksGB1AA
21 20 adantr AWalksGBB0=BA1AA
22 21 pm5.32i AWalksGBB0=BA1AAWalksGBB0=BAA
23 df-3an AWalksGBB0=BAAAWalksGBB0=BAA
24 22 23 sylbb2 AWalksGBB0=BA1AAWalksGBB0=BAA
25 24 ex AWalksGBB0=BA1AAWalksGBB0=BAA
26 15 25 sylbi AClWalksGB1AAWalksGBB0=BAA
27 14 26 sylbir ABClWalksG1AAWalksGBB0=BAA
28 13 27 syl6bi U=ABUClWalksG1AAWalksGBB0=BAA
29 12 28 sylbir U=1stU2ndUUClWalksG1AAWalksGBB0=BAA
30 10 29 syl UWalksGUClWalksG1AAWalksGBB0=BAA
31 9 30 mpcom UClWalksG1AAWalksGBB0=BAA
32 31 imp UClWalksG1AAWalksGBB0=BAA
33 8 32 sylbi UCAWalksGBB0=BAA