| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
|- C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
| 2 |
|
clwlkclwwlkf.a |
|- A = ( 1st ` U ) |
| 3 |
|
clwlkclwwlkf.b |
|- B = ( 2nd ` U ) |
| 4 |
|
fveq2 |
|- ( w = U -> ( 1st ` w ) = ( 1st ` U ) ) |
| 5 |
4 2
|
eqtr4di |
|- ( w = U -> ( 1st ` w ) = A ) |
| 6 |
5
|
fveq2d |
|- ( w = U -> ( # ` ( 1st ` w ) ) = ( # ` A ) ) |
| 7 |
6
|
breq2d |
|- ( w = U -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` A ) ) ) |
| 8 |
7 1
|
elrab2 |
|- ( U e. C <-> ( U e. ( ClWalks ` G ) /\ 1 <_ ( # ` A ) ) ) |
| 9 |
|
clwlkwlk |
|- ( U e. ( ClWalks ` G ) -> U e. ( Walks ` G ) ) |
| 10 |
|
wlkop |
|- ( U e. ( Walks ` G ) -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
| 11 |
2 3
|
opeq12i |
|- <. A , B >. = <. ( 1st ` U ) , ( 2nd ` U ) >. |
| 12 |
11
|
eqeq2i |
|- ( U = <. A , B >. <-> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
| 13 |
|
eleq1 |
|- ( U = <. A , B >. -> ( U e. ( ClWalks ` G ) <-> <. A , B >. e. ( ClWalks ` G ) ) ) |
| 14 |
|
df-br |
|- ( A ( ClWalks ` G ) B <-> <. A , B >. e. ( ClWalks ` G ) ) |
| 15 |
|
isclwlk |
|- ( A ( ClWalks ` G ) B <-> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) ) |
| 16 |
|
wlkcl |
|- ( A ( Walks ` G ) B -> ( # ` A ) e. NN0 ) |
| 17 |
|
elnnnn0c |
|- ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ 1 <_ ( # ` A ) ) ) |
| 18 |
17
|
a1i |
|- ( A ( Walks ` G ) B -> ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ 1 <_ ( # ` A ) ) ) ) |
| 19 |
16 18
|
mpbirand |
|- ( A ( Walks ` G ) B -> ( ( # ` A ) e. NN <-> 1 <_ ( # ` A ) ) ) |
| 20 |
19
|
bicomd |
|- ( A ( Walks ` G ) B -> ( 1 <_ ( # ` A ) <-> ( # ` A ) e. NN ) ) |
| 21 |
20
|
adantr |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) -> ( 1 <_ ( # ` A ) <-> ( # ` A ) e. NN ) ) |
| 22 |
21
|
pm5.32i |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ 1 <_ ( # ` A ) ) <-> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ ( # ` A ) e. NN ) ) |
| 23 |
|
df-3an |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) <-> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ ( # ` A ) e. NN ) ) |
| 24 |
22 23
|
sylbb2 |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ 1 <_ ( # ` A ) ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |
| 25 |
24
|
ex |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) |
| 26 |
15 25
|
sylbi |
|- ( A ( ClWalks ` G ) B -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) |
| 27 |
14 26
|
sylbir |
|- ( <. A , B >. e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) |
| 28 |
13 27
|
biimtrdi |
|- ( U = <. A , B >. -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) |
| 29 |
12 28
|
sylbir |
|- ( U = <. ( 1st ` U ) , ( 2nd ` U ) >. -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) |
| 30 |
10 29
|
syl |
|- ( U e. ( Walks ` G ) -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) |
| 31 |
9 30
|
mpcom |
|- ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) |
| 32 |
31
|
imp |
|- ( ( U e. ( ClWalks ` G ) /\ 1 <_ ( # ` A ) ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |
| 33 |
8 32
|
sylbi |
|- ( U e. C -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |