| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
|
| 2 |
|
clwlkclwwlkf.f |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
1 3 4
|
clwlkclwwlkflem |
|
| 6 |
|
isclwlk |
|
| 7 |
|
fvex |
|
| 8 |
|
breq1 |
|
| 9 |
7 8
|
spcev |
|
| 10 |
6 9
|
sylbir |
|
| 11 |
10
|
3adant3 |
|
| 12 |
11
|
adantl |
|
| 13 |
|
simpl |
|
| 14 |
|
eqid |
|
| 15 |
14
|
wlkpwrd |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
elnnnn0c |
|
| 19 |
|
nn0re |
|
| 20 |
|
1e2m1 |
|
| 21 |
20
|
breq1i |
|
| 22 |
21
|
biimpi |
|
| 23 |
|
2re |
|
| 24 |
|
1re |
|
| 25 |
|
lesubadd |
|
| 26 |
23 24 25
|
mp3an12 |
|
| 27 |
22 26
|
imbitrid |
|
| 28 |
19 27
|
syl |
|
| 29 |
28
|
adantl |
|
| 30 |
|
wlklenvp1 |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
breq2d |
|
| 33 |
29 32
|
sylibrd |
|
| 34 |
33
|
expimpd |
|
| 35 |
18 34
|
biimtrid |
|
| 36 |
35
|
a1d |
|
| 37 |
36
|
3imp |
|
| 38 |
37
|
adantl |
|
| 39 |
|
eqid |
|
| 40 |
14 39
|
clwlkclwwlk |
|
| 41 |
13 17 38 40
|
syl3anc |
|
| 42 |
12 41
|
mpbid |
|
| 43 |
5 42
|
sylan2 |
|
| 44 |
43
|
simprd |
|
| 45 |
44 2
|
fmptd |
|