| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c |  | 
						
							| 2 |  | clwlkclwwlkf.f |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 3 4 | clwlkclwwlkflem |  | 
						
							| 6 |  | isclwlk |  | 
						
							| 7 |  | fvex |  | 
						
							| 8 |  | breq1 |  | 
						
							| 9 | 7 8 | spcev |  | 
						
							| 10 | 6 9 | sylbir |  | 
						
							| 11 | 10 | 3adant3 |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 | wlkpwrd |  | 
						
							| 16 | 15 | 3ad2ant1 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | elnnnn0c |  | 
						
							| 19 |  | nn0re |  | 
						
							| 20 |  | 1e2m1 |  | 
						
							| 21 | 20 | breq1i |  | 
						
							| 22 | 21 | biimpi |  | 
						
							| 23 |  | 2re |  | 
						
							| 24 |  | 1re |  | 
						
							| 25 |  | lesubadd |  | 
						
							| 26 | 23 24 25 | mp3an12 |  | 
						
							| 27 | 22 26 | imbitrid |  | 
						
							| 28 | 19 27 | syl |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | wlklenvp1 |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | breq2d |  | 
						
							| 33 | 29 32 | sylibrd |  | 
						
							| 34 | 33 | expimpd |  | 
						
							| 35 | 18 34 | biimtrid |  | 
						
							| 36 | 35 | a1d |  | 
						
							| 37 | 36 | 3imp |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 14 39 | clwlkclwwlk |  | 
						
							| 41 | 13 17 38 40 | syl3anc |  | 
						
							| 42 | 12 41 | mpbid |  | 
						
							| 43 | 5 42 | sylan2 |  | 
						
							| 44 | 43 | simprd |  | 
						
							| 45 | 44 2 | fmptd |  |