| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlk.v |
|
| 2 |
|
clwlkclwwlk.e |
|
| 3 |
2
|
uspgrf1oedg |
|
| 4 |
|
f1of1 |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
clwlkclwwlklem3 |
|
| 7 |
5 6
|
syl3an1 |
|
| 8 |
|
lencl |
|
| 9 |
|
ige2m1fz |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
pfxlen |
|
| 12 |
10 11
|
syldan |
|
| 13 |
8
|
nn0cnd |
|
| 14 |
|
1cnd |
|
| 15 |
13 14
|
subcld |
|
| 16 |
15
|
subid1d |
|
| 17 |
16
|
eqcomd |
|
| 18 |
17
|
adantr |
|
| 19 |
12 18
|
eqtrd |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
oveq2d |
|
| 22 |
12
|
oveq1d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
23
|
eleq2d |
|
| 25 |
|
simpll |
|
| 26 |
|
wrdlenge2n0 |
|
| 27 |
26
|
adantr |
|
| 28 |
|
nn0z |
|
| 29 |
|
peano2zm |
|
| 30 |
28 29
|
syl |
|
| 31 |
8 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
|
elfzom1elfzo |
|
| 34 |
32 33
|
sylan |
|
| 35 |
|
pfxtrcfv |
|
| 36 |
25 27 34 35
|
syl3anc |
|
| 37 |
8
|
adantr |
|
| 38 |
|
elfzom1elp1fzo |
|
| 39 |
30 38
|
sylan |
|
| 40 |
37 39
|
sylan |
|
| 41 |
|
pfxtrcfv |
|
| 42 |
25 27 40 41
|
syl3anc |
|
| 43 |
36 42
|
preq12d |
|
| 44 |
43
|
eleq1d |
|
| 45 |
44
|
ex |
|
| 46 |
24 45
|
sylbid |
|
| 47 |
46
|
imp |
|
| 48 |
21 47
|
raleqbidva |
|
| 49 |
|
pfxtrcfvl |
|
| 50 |
|
pfxtrcfv0 |
|
| 51 |
49 50
|
preq12d |
|
| 52 |
51
|
eleq1d |
|
| 53 |
48 52
|
anbi12d |
|
| 54 |
53
|
bicomd |
|
| 55 |
54
|
3adant1 |
|
| 56 |
|
pfxcl |
|
| 57 |
56
|
3ad2ant2 |
|
| 58 |
57
|
3biant1d |
|
| 59 |
55 58
|
bitrd |
|
| 60 |
59
|
anbi2d |
|
| 61 |
7 60
|
bitrd |
|
| 62 |
|
uspgrupgr |
|
| 63 |
1 2
|
isclwlkupgr |
|
| 64 |
|
3an4anass |
|
| 65 |
63 64
|
bitr4di |
|
| 66 |
62 65
|
syl |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
exbidv |
|
| 69 |
68
|
3adant3 |
|
| 70 |
|
eqid |
|
| 71 |
1 70
|
isclwwlk |
|
| 72 |
|
simpl |
|
| 73 |
|
nn0ge2m1nn |
|
| 74 |
8 73
|
sylan |
|
| 75 |
|
nn0re |
|
| 76 |
75
|
lem1d |
|
| 77 |
76
|
a1d |
|
| 78 |
8 77
|
syl |
|
| 79 |
78
|
imp |
|
| 80 |
72 74 79
|
3jca |
|
| 81 |
80
|
3adant1 |
|
| 82 |
|
pfxn0 |
|
| 83 |
81 82
|
syl |
|
| 84 |
83
|
biantrud |
|
| 85 |
84
|
bicomd |
|
| 86 |
85
|
3anbi1d |
|
| 87 |
71 86
|
bitrid |
|
| 88 |
|
biid |
|
| 89 |
|
edgval |
|
| 90 |
2
|
eqcomi |
|
| 91 |
90
|
rneqi |
|
| 92 |
89 91
|
eqtri |
|
| 93 |
92
|
eleq2i |
|
| 94 |
93
|
ralbii |
|
| 95 |
92
|
eleq2i |
|
| 96 |
88 94 95
|
3anbi123i |
|
| 97 |
87 96
|
bitrdi |
|
| 98 |
97
|
anbi2d |
|
| 99 |
61 69 98
|
3bitr4d |
|