Description: Lemma 3 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | clwlkclwwlklem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp1 | |
|
3 | 2 | adantr | |
4 | 1 3 | anim12i | |
5 | simp3 | |
|
6 | simpl2 | |
|
7 | 5 6 | anim12ci | |
8 | simp3 | |
|
9 | 8 | anim1i | |
10 | 9 | adantl | |
11 | clwlkclwwlklem2 | |
|
12 | 4 7 10 11 | syl3anc | |
13 | lencl | |
|
14 | lencl | |
|
15 | ffz0hash | |
|
16 | oveq1 | |
|
17 | 16 | oveq1d | |
18 | nn0cn | |
|
19 | peano2cn | |
|
20 | peano2cnm | |
|
21 | 18 19 20 | 3syl | |
22 | 21 | subid1d | |
23 | 1cnd | |
|
24 | 18 23 | pncand | |
25 | 22 24 | eqtrd | |
26 | 25 | adantr | |
27 | 17 26 | sylan9eqr | |
28 | 27 | oveq1d | |
29 | 28 | oveq2d | |
30 | 29 | raleqdv | |
31 | oveq1 | |
|
32 | 2cnd | |
|
33 | 18 32 23 | subsub3d | |
34 | 2m1e1 | |
|
35 | 34 | a1i | |
36 | 35 | oveq2d | |
37 | 33 36 | eqtr3d | |
38 | 37 | adantr | |
39 | 31 38 | sylan9eqr | |
40 | 39 | fveq2d | |
41 | 40 | preq1d | |
42 | 41 | eleq1d | |
43 | 30 42 | anbi12d | |
44 | 43 | anbi2d | |
45 | 3anass | |
|
46 | 44 45 | bitr4di | |
47 | 46 | expcom | |
48 | 47 | expd | |
49 | 15 48 | syl | |
50 | 49 | ex | |
51 | 50 | com23 | |
52 | 14 14 51 | sylc | |
53 | 52 | imp | |
54 | 53 | 3adant3 | |
55 | 54 | adantr | |
56 | 13 55 | syl5com | |
57 | 56 | 3ad2ant2 | |
58 | 57 | imp | |
59 | 12 58 | mpbird | |
60 | 59 | ex | |
61 | 60 | exlimdv | |
62 | clwlkclwwlklem1 | |
|
63 | 61 62 | impbid | |