| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐸 : dom  𝐸 –1-1→ 𝑅 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  𝑓  ∈  Word  dom  𝐸 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  𝑓  ∈  Word  dom  𝐸 ) | 
						
							| 4 | 1 3 | anim12i | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑓  ∈  Word  dom  𝐸 ) ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 6 |  | simpl2 | ⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) | 
						
							| 7 | 5 6 | anim12ci | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) | 
						
							| 11 |  | clwlkclwwlklem2 | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑓  ∈  Word  dom  𝐸 )  ∧  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) | 
						
							| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) | 
						
							| 13 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 14 |  | lencl | ⊢ ( 𝑓  ∈  Word  dom  𝐸  →  ( ♯ ‘ 𝑓 )  ∈  ℕ0 ) | 
						
							| 15 |  | ffz0hash | ⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  =  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 ) ) | 
						
							| 18 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ♯ ‘ 𝑓 )  ∈  ℂ ) | 
						
							| 19 |  | peano2cn | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℂ  →  ( ( ♯ ‘ 𝑓 )  +  1 )  ∈  ℂ ) | 
						
							| 20 |  | peano2cnm | ⊢ ( ( ( ♯ ‘ 𝑓 )  +  1 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  ∈  ℂ ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  ∈  ℂ ) | 
						
							| 22 | 21 | subid1d | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 ) ) | 
						
							| 23 |  | 1cnd | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 24 | 18 23 | pncand | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 27 | 17 26 | sylan9eqr | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ) | 
						
							| 30 | 29 | raleqdv | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 ) ) | 
						
							| 32 |  | 2cnd | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 33 | 18 32 23 | subsub3d | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  −  ( 2  −  1 ) )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 ) ) | 
						
							| 34 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 35 | 34 | a1i | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 2  −  1 )  =  1 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  −  ( 2  −  1 ) )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 37 | 33 36 | eqtr3d | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 39 | 31 38 | sylan9eqr | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ) | 
						
							| 41 | 40 | preq1d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) } ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) | 
						
							| 43 | 30 42 | anbi12d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 45 |  | 3anass | ⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 46 | 44 45 | bitr4di | ⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 47 | 46 | expcom | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 48 | 47 | expd | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) | 
						
							| 49 | 15 48 | syl | ⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) | 
						
							| 50 | 49 | ex | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) | 
						
							| 51 | 50 | com23 | ⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) | 
						
							| 52 | 14 14 51 | sylc | ⊢ ( 𝑓  ∈  Word  dom  𝐸  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 54 | 53 | 3adant3 | ⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 56 | 13 55 | syl5com | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 59 | 12 58 | mpbird | ⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 61 | 60 | exlimdv | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) | 
						
							| 62 |  | clwlkclwwlklem1 | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  →  ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) ) | 
						
							| 63 | 61 62 | impbid | ⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) |