Metamath Proof Explorer


Theorem clwlkclwwlklem2

Description: Lemma 2 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion clwlkclwwlklem2 ( ( ( 𝐸 : dom 𝐸 –1-1β†’ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) )

Proof

Step Hyp Ref Expression
1 f1fn ⊒ ( 𝐸 : dom 𝐸 –1-1β†’ 𝑅 β†’ 𝐸 Fn dom 𝐸 )
2 dffn3 ⊒ ( 𝐸 Fn dom 𝐸 ↔ 𝐸 : dom 𝐸 ⟢ ran 𝐸 )
3 1 2 sylib ⊒ ( 𝐸 : dom 𝐸 –1-1β†’ 𝑅 β†’ 𝐸 : dom 𝐸 ⟢ ran 𝐸 )
4 lencl ⊒ ( 𝐹 ∈ Word dom 𝐸 β†’ ( β™― β€˜ 𝐹 ) ∈ β„•0 )
5 ffn ⊒ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ 𝑃 Fn ( 0 ... ( β™― β€˜ 𝐹 ) ) )
6 fnfz0hash ⊒ ( ( ( β™― β€˜ 𝐹 ) ∈ β„•0 ∧ 𝑃 Fn ( 0 ... ( β™― β€˜ 𝐹 ) ) ) β†’ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) )
7 4 5 6 syl2an ⊒ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ) β†’ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) )
8 ffz0iswrd ⊒ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ 𝑃 ∈ Word 𝑉 )
9 lsw ⊒ ( 𝑃 ∈ Word 𝑉 β†’ ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ ( ( β™― β€˜ 𝑃 ) βˆ’ 1 ) ) )
10 9 ad6antr ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ ( ( β™― β€˜ 𝑃 ) βˆ’ 1 ) ) )
11 fvoveq1 ⊒ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 𝑃 β€˜ ( ( β™― β€˜ 𝑃 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) )
12 11 ad4antlr ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( 𝑃 β€˜ ( ( β™― β€˜ 𝑃 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) )
13 eqcom ⊒ ( ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ↔ ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) = ( 𝑃 β€˜ 0 ) )
14 nn0cn ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ β„‚ )
15 1cnd ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ 1 ∈ β„‚ )
16 14 15 pncand ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) = ( β™― β€˜ 𝐹 ) )
17 16 eqcomd ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) = ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) )
18 17 ad4antlr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( β™― β€˜ 𝐹 ) = ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) )
19 18 fveqeq2d ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) = ( 𝑃 β€˜ 0 ) ↔ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ 0 ) ) )
20 19 biimpd ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) = ( 𝑃 β€˜ 0 ) β†’ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ 0 ) ) )
21 13 20 biimtrid ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) β†’ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ 0 ) ) )
22 21 adantld ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ 0 ) ) )
23 22 imp ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) + 1 ) βˆ’ 1 ) ) = ( 𝑃 β€˜ 0 ) )
24 10 12 23 3eqtrd ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) )
25 nn0z ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ β„€ )
26 peano2zm ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„€ β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ β„€ )
27 25 26 syl ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ β„€ )
28 nn0re ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ ℝ )
29 28 lem1d ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ≀ ( β™― β€˜ 𝐹 ) )
30 eluz2 ⊒ ( ( β™― β€˜ 𝐹 ) ∈ ( β„€β‰₯ β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ↔ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ β„€ ∧ ( β™― β€˜ 𝐹 ) ∈ β„€ ∧ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ≀ ( β™― β€˜ 𝐹 ) ) )
31 27 25 29 30 syl3anbrc ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ ( β„€β‰₯ β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) )
32 31 ad4antlr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( β™― β€˜ 𝐹 ) ∈ ( β„€β‰₯ β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) )
33 fzoss2 ⊒ ( ( β™― β€˜ 𝐹 ) ∈ ( β„€β‰₯ β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) βŠ† ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
34 ssralv ⊒ ( ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) βŠ† ( 0 ..^ ( β™― β€˜ 𝐹 ) ) β†’ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ) )
35 32 33 34 3syl ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ) )
36 simpr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ 𝐸 : dom 𝐸 ⟢ ran 𝐸 )
37 36 adantr ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ 𝐸 : dom 𝐸 ⟢ ran 𝐸 )
38 wrdf ⊒ ( 𝐹 ∈ Word dom 𝐸 β†’ 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 )
39 simpll ⊒ ( ( ( 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 )
40 fzossrbm1 ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„€ β†’ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) βŠ† ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
41 25 40 syl ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) βŠ† ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
42 41 adantl ⊒ ( ( 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) β†’ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) βŠ† ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
43 42 sselda ⊒ ( ( ( 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
44 39 43 ffvelcdmd ⊒ ( ( ( 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 )
45 44 exp31 ⊒ ( 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 ) ) )
46 38 45 syl ⊒ ( 𝐹 ∈ Word dom 𝐸 β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 ) ) )
47 46 adantl ⊒ ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 ) ) )
48 47 imp ⊒ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) β†’ ( 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 ) )
49 48 ad3antrrr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 ) )
50 49 imp ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ ( 𝐹 β€˜ 𝑖 ) ∈ dom 𝐸 )
51 37 50 ffvelcdmd ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) ∈ ran 𝐸 )
52 eqcom ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ↔ { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } = ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) )
53 52 biimpi ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } = ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) )
54 53 eleq1d ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ ( { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) ∈ ran 𝐸 ) )
55 51 54 syl5ibrcom ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) )
56 55 ralimdva ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) )
57 35 56 syldc ⊒ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) )
58 57 adantr ⊒ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) )
59 58 impcom ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 )
60 breq2 ⊒ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) ↔ 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) ) )
61 60 adantl ⊒ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) ↔ 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) ) )
62 2re ⊒ 2 ∈ ℝ
63 62 a1i ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ 2 ∈ ℝ )
64 1red ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ 1 ∈ ℝ )
65 63 64 28 lesubaddd ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( 2 βˆ’ 1 ) ≀ ( β™― β€˜ 𝐹 ) ↔ 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) ) )
66 2m1e1 ⊒ ( 2 βˆ’ 1 ) = 1
67 66 breq1i ⊒ ( ( 2 βˆ’ 1 ) ≀ ( β™― β€˜ 𝐹 ) ↔ 1 ≀ ( β™― β€˜ 𝐹 ) )
68 elnnnn0c ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„• ↔ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 ∧ 1 ≀ ( β™― β€˜ 𝐹 ) ) )
69 68 simplbi2 ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 1 ≀ ( β™― β€˜ 𝐹 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
70 67 69 biimtrid ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( 2 βˆ’ 1 ) ≀ ( β™― β€˜ 𝐹 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
71 65 70 sylbird ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
72 71 adantl ⊒ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) β†’ ( 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
73 72 adantr ⊒ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) β†’ ( 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
74 61 73 sylbid ⊒ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
75 74 imp ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• )
76 75 adantr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• )
77 lbfzo0 ⊒ ( 0 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ↔ ( β™― β€˜ 𝐹 ) ∈ β„• )
78 76 77 sylibr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ 0 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
79 fzoend ⊒ ( 0 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
80 78 79 syl ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
81 2fveq3 ⊒ ( 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) β†’ ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) )
82 fveq2 ⊒ ( 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) β†’ ( 𝑃 β€˜ 𝑖 ) = ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) )
83 fvoveq1 ⊒ ( 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) β†’ ( 𝑃 β€˜ ( 𝑖 + 1 ) ) = ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) )
84 82 83 preq12d ⊒ ( 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) β†’ { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } )
85 81 84 eqeq12d ⊒ ( 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } ) )
86 85 adantl ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ 𝑖 = ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } ) )
87 80 86 rspcdv ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } ) )
88 14 15 npcand ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) = ( β™― β€˜ 𝐹 ) )
89 88 ad4antlr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) = ( β™― β€˜ 𝐹 ) )
90 89 fveq2d ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) )
91 90 preq2d ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } )
92 91 eqeq2d ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } ↔ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ) )
93 38 ad4antlr ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ 𝐹 : ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ⟢ dom 𝐸 )
94 71 com12 ⊒ ( 2 ≀ ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) )
95 60 94 syl6bi ⊒ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) ) )
96 95 com3r ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) ) )
97 96 adantl ⊒ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• ) ) )
98 97 imp31 ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( β™― β€˜ 𝐹 ) ∈ β„• )
99 98 77 sylibr ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ 0 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
100 99 79 syl ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) )
101 93 100 ffvelcdmd ⊒ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ∈ dom 𝐸 )
102 101 adantr ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ∈ dom 𝐸 )
103 36 102 ffvelcdmd ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) ∈ ran 𝐸 )
104 eqcom ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ↔ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } = ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) )
105 104 biimpi ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } = ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) )
106 105 eleq1d ⊒ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } β†’ ( { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) ∈ ran 𝐸 ) )
107 103 106 syl5ibrcom ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
108 92 107 sylbid ⊒ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ ( ( 𝐸 β€˜ ( 𝐹 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) ) = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) + 1 ) ) } β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
109 87 108 syldc ⊒ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } β†’ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
110 109 adantr ⊒ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
111 110 impcom ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 )
112 preq2 ⊒ ( ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } = { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } )
113 112 eleq1d ⊒ ( ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) β†’ ( { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
114 113 adantl ⊒ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
115 114 adantl ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) } ∈ ran 𝐸 ) )
116 111 115 mpbird ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 )
117 24 59 116 3jca ⊒ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟢ ran 𝐸 ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) )
118 117 exp41 ⊒ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( β™― β€˜ 𝐹 ) ∈ β„•0 ) ∧ ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) )
119 118 exp41 ⊒ ( 𝑃 ∈ Word 𝑉 β†’ ( 𝐹 ∈ Word dom 𝐸 β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) )
120 8 119 syl ⊒ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( 𝐹 ∈ Word dom 𝐸 β†’ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) )
121 120 com13 ⊒ ( ( β™― β€˜ 𝐹 ) ∈ β„•0 β†’ ( 𝐹 ∈ Word dom 𝐸 β†’ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) )
122 4 121 mpcom ⊒ ( 𝐹 ∈ Word dom 𝐸 β†’ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) )
123 122 imp ⊒ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ) β†’ ( ( β™― β€˜ 𝑃 ) = ( ( β™― β€˜ 𝐹 ) + 1 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) )
124 7 123 mpd ⊒ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) )
125 124 expcom ⊒ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( 𝐹 ∈ Word dom 𝐸 β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) )
126 125 com14 ⊒ ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 β†’ ( 𝐹 ∈ Word dom 𝐸 β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) ) )
127 126 imp ⊒ ( ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) β†’ ( 2 ≀ ( β™― β€˜ 𝑃 ) β†’ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) ) )
128 127 impcomd ⊒ ( ( 𝐸 : dom 𝐸 ⟢ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) β†’ ( ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) )
129 3 128 sylan ⊒ ( ( 𝐸 : dom 𝐸 –1-1β†’ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) β†’ ( ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) β†’ ( ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) ) ) )
130 129 3imp ⊒ ( ( ( 𝐸 : dom 𝐸 –1-1β†’ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( β™― β€˜ 𝐹 ) ) ⟢ 𝑉 ∧ 2 ≀ ( β™― β€˜ 𝑃 ) ) ∧ ( βˆ€ 𝑖 ∈ ( 0 ..^ ( β™― β€˜ 𝐹 ) ) ( 𝐸 β€˜ ( 𝐹 β€˜ 𝑖 ) ) = { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 β€˜ 0 ) = ( 𝑃 β€˜ ( β™― β€˜ 𝐹 ) ) ) ) β†’ ( ( lastS β€˜ 𝑃 ) = ( 𝑃 β€˜ 0 ) ∧ βˆ€ 𝑖 ∈ ( 0 ..^ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) { ( 𝑃 β€˜ 𝑖 ) , ( 𝑃 β€˜ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 β€˜ ( ( β™― β€˜ 𝐹 ) βˆ’ 1 ) ) , ( 𝑃 β€˜ 0 ) } ∈ ran 𝐸 ) )