| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-> R ) | 
						
							| 2 |  | simp1 |  |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom E ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> f e. Word dom E ) | 
						
							| 4 | 1 3 | anim12i |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( E : dom E -1-1-> R /\ f e. Word dom E ) ) | 
						
							| 5 |  | simp3 |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) | 
						
							| 6 |  | simpl2 |  |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> P : ( 0 ... ( # ` f ) ) --> V ) | 
						
							| 7 | 5 6 | anim12ci |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) ) | 
						
							| 8 |  | simp3 |  |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 9 | 8 | anim1i |  |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) | 
						
							| 11 |  | clwlkclwwlklem2 |  |-  ( ( ( E : dom E -1-1-> R /\ f e. Word dom E ) /\ ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
							| 12 | 4 7 10 11 | syl3anc |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
							| 13 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 14 |  | lencl |  |-  ( f e. Word dom E -> ( # ` f ) e. NN0 ) | 
						
							| 15 |  | ffz0hash |  |-  ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( # ` P ) = ( ( # ` f ) + 1 ) ) | 
						
							| 16 |  | oveq1 |  |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` f ) + 1 ) - 1 ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) ) | 
						
							| 18 |  | nn0cn |  |-  ( ( # ` f ) e. NN0 -> ( # ` f ) e. CC ) | 
						
							| 19 |  | peano2cn |  |-  ( ( # ` f ) e. CC -> ( ( # ` f ) + 1 ) e. CC ) | 
						
							| 20 |  | peano2cnm |  |-  ( ( ( # ` f ) + 1 ) e. CC -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC ) | 
						
							| 22 | 21 | subid1d |  |-  ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( ( ( # ` f ) + 1 ) - 1 ) ) | 
						
							| 23 |  | 1cnd |  |-  ( ( # ` f ) e. NN0 -> 1 e. CC ) | 
						
							| 24 | 18 23 | pncand |  |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) = ( # ` f ) ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) ) | 
						
							| 27 | 17 26 | sylan9eqr |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( # ` f ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` f ) - 1 ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) = ( 0 ..^ ( ( # ` f ) - 1 ) ) ) | 
						
							| 30 | 29 | raleqdv |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
							| 31 |  | oveq1 |  |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 2 ) = ( ( ( # ` f ) + 1 ) - 2 ) ) | 
						
							| 32 |  | 2cnd |  |-  ( ( # ` f ) e. NN0 -> 2 e. CC ) | 
						
							| 33 | 18 32 23 | subsub3d |  |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( ( # ` f ) + 1 ) - 2 ) ) | 
						
							| 34 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 35 | 34 | a1i |  |-  ( ( # ` f ) e. NN0 -> ( 2 - 1 ) = 1 ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( # ` f ) - 1 ) ) | 
						
							| 37 | 33 36 | eqtr3d |  |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) ) | 
						
							| 39 | 31 38 | sylan9eqr |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( # ` P ) - 2 ) = ( ( # ` f ) - 1 ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( P ` ( ( # ` P ) - 2 ) ) = ( P ` ( ( # ` f ) - 1 ) ) ) | 
						
							| 41 | 40 | preq1d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } ) | 
						
							| 42 | 41 | eleq1d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
							| 43 | 30 42 | anbi12d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) <-> ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
							| 44 | 43 | anbi2d |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 45 |  | 3anass |  |-  ( ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
							| 46 | 44 45 | bitr4di |  |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
							| 47 | 46 | expcom |  |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 48 | 47 | expd |  |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
							| 49 | 15 48 | syl |  |-  ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
							| 50 | 49 | ex |  |-  ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
							| 51 | 50 | com23 |  |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
							| 52 | 14 14 51 | sylc |  |-  ( f e. Word dom E -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 54 | 53 | 3adant3 |  |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 56 | 13 55 | syl5com |  |-  ( P e. Word V -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 57 | 56 | 3ad2ant2 |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
							| 59 | 12 58 | mpbird |  |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 61 | 60 | exlimdv |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
							| 62 |  | clwlkclwwlklem1 |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) ) | 
						
							| 63 | 61 62 | impbid |  |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |