Metamath Proof Explorer


Theorem isclwlkupgr

Description: Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 11-Apr-2021) (Revised by AV, 28-Oct-2021)

Ref Expression
Hypotheses isclwlke.v V = Vtx G
isclwlke.i I = iEdg G
Assertion isclwlkupgr G UPGraph F ClWalks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F

Proof

Step Hyp Ref Expression
1 isclwlke.v V = Vtx G
2 isclwlke.i I = iEdg G
3 isclwlk F ClWalks G P F Walks G P P 0 = P F
4 1 2 upgriswlk G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
5 4 anbi1d G UPGraph F Walks G P P 0 = P F F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F
6 3an4anass F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F
7 5 6 bitrdi G UPGraph F Walks G P P 0 = P F F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F
8 3 7 syl5bb G UPGraph F ClWalks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 P 0 = P F