Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 2-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwlkclwwlk.v | |
|
clwlkclwwlk.e | |
||
Assertion | clwlkclwwlk2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlk.v | |
|
2 | clwlkclwwlk.e | |
|
3 | simp1 | |
|
4 | wrdsymb1 | |
|
5 | 4 | s1cld | |
6 | ccatcl | |
|
7 | 5 6 | syldan | |
8 | 7 | 3adant1 | |
9 | lencl | |
|
10 | 1e2m1 | |
|
11 | 10 | breq1i | |
12 | 2re | |
|
13 | 12 | a1i | |
14 | 1red | |
|
15 | nn0re | |
|
16 | 13 14 15 | lesubaddd | |
17 | 11 16 | bitrid | |
18 | 9 17 | syl | |
19 | 18 | biimpa | |
20 | s1len | |
|
21 | 20 | oveq2i | |
22 | 19 21 | breqtrrdi | |
23 | ccatlen | |
|
24 | 5 23 | syldan | |
25 | 22 24 | breqtrrd | |
26 | 25 | 3adant1 | |
27 | 1 2 | clwlkclwwlk | |
28 | 3 8 26 27 | syl3anc | |
29 | wrdlenccats1lenm1 | |
|
30 | 29 | oveq2d | |
31 | 30 | adantr | |
32 | simpl | |
|
33 | eqidd | |
|
34 | pfxccatid | |
|
35 | 32 5 33 34 | syl3anc | |
36 | 31 35 | eqtr2d | |
37 | 36 | eleq1d | |
38 | lswccats1fst | |
|
39 | 38 | biantrurd | |
40 | 37 39 | bitr2d | |
41 | 40 | 3adant1 | |
42 | 28 41 | bitrd | |