| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlk.v |  | 
						
							| 2 |  | clwlkclwwlk.e |  | 
						
							| 3 |  | simp1 |  | 
						
							| 4 |  | wrdsymb1 |  | 
						
							| 5 | 4 | s1cld |  | 
						
							| 6 |  | ccatcl |  | 
						
							| 7 | 5 6 | syldan |  | 
						
							| 8 | 7 | 3adant1 |  | 
						
							| 9 |  | lencl |  | 
						
							| 10 |  | 1e2m1 |  | 
						
							| 11 | 10 | breq1i |  | 
						
							| 12 |  | 2re |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | 1red |  | 
						
							| 15 |  | nn0re |  | 
						
							| 16 | 13 14 15 | lesubaddd |  | 
						
							| 17 | 11 16 | bitrid |  | 
						
							| 18 | 9 17 | syl |  | 
						
							| 19 | 18 | biimpa |  | 
						
							| 20 |  | s1len |  | 
						
							| 21 | 20 | oveq2i |  | 
						
							| 22 | 19 21 | breqtrrdi |  | 
						
							| 23 |  | ccatlen |  | 
						
							| 24 | 5 23 | syldan |  | 
						
							| 25 | 22 24 | breqtrrd |  | 
						
							| 26 | 25 | 3adant1 |  | 
						
							| 27 | 1 2 | clwlkclwwlk |  | 
						
							| 28 | 3 8 26 27 | syl3anc |  | 
						
							| 29 |  | wrdlenccats1lenm1 |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | simpl |  | 
						
							| 33 |  | eqidd |  | 
						
							| 34 |  | pfxccatid |  | 
						
							| 35 | 32 5 33 34 | syl3anc |  | 
						
							| 36 | 31 35 | eqtr2d |  | 
						
							| 37 | 36 | eleq1d |  | 
						
							| 38 |  | lswccats1fst |  | 
						
							| 39 | 38 | biantrurd |  | 
						
							| 40 | 37 39 | bitr2d |  | 
						
							| 41 | 40 | 3adant1 |  | 
						
							| 42 | 28 41 | bitrd |  |