| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 2 | 1 | rabex | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ∈  V | 
						
							| 3 |  | ovex | ⊢ ( 𝑁  ClWWalksN  𝐺 )  ∈  V | 
						
							| 4 |  | eqid | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } | 
						
							| 5 |  | eqid | ⊢ ( 𝑐  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ↦  ( 𝑐  prefix  𝑁 ) )  =  ( 𝑐  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ↦  ( 𝑐  prefix  𝑁 ) ) | 
						
							| 6 | 4 5 | clwwlkf1o | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑐  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ↦  ( 𝑐  prefix  𝑁 ) ) : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } –1-1-onto→ ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 7 |  | f1oen2g | ⊢ ( ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ∈  V  ∧  ( 𝑁  ClWWalksN  𝐺 )  ∈  V  ∧  ( 𝑐  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ↦  ( 𝑐  prefix  𝑁 ) ) : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } –1-1-onto→ ( 𝑁  ClWWalksN  𝐺 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ≈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 8 | 2 3 6 7 | mp3an12i | ⊢ ( 𝑁  ∈  ℕ  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  ≈  ( 𝑁  ClWWalksN  𝐺 ) ) |