| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkwwlksb.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | ccatws1lenp1b | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 ) )  ↔  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 7 |  | eleq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  𝑁  ∈  ℕ ) ) | 
						
							| 8 |  | len0nnbi | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ≠  ∅  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 9 | 8 | biimprcd | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( 𝑊  ∈  Word  𝑉  →  𝑊  ≠  ∅ ) ) | 
						
							| 10 | 7 9 | biimtrrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑊  ∈  Word  𝑉  →  𝑊  ≠  ∅ ) ) ) | 
						
							| 11 | 10 | com13 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑁  ∈  ℕ  →  ( ( ♯ ‘ 𝑊 )  =  𝑁  →  𝑊  ≠  ∅ ) ) ) | 
						
							| 12 | 11 | imp31 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  𝑊  ≠  ∅ ) | 
						
							| 13 | 1 | clwwlkwwlksb | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 14 | 6 12 13 | syl2an2r | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 15 | 14 | bicomd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 17 | 16 | pm5.32rd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) ) | 
						
							| 18 | 5 17 | bitrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 ) )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) ) | 
						
							| 19 | 2 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 20 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 22 |  | isclwwlkn | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) ) | 
						
							| 24 | 18 21 23 | 3bitr4rd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) |