Metamath Proof Explorer


Theorem cmbr

Description: Binary relation expressing A commutes with B . Definition of commutes in Kalmbach p. 20. (Contributed by NM, 14-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cmbr ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥C𝐴C ) )
2 1 anbi1d ( 𝑥 = 𝐴 → ( ( 𝑥C𝑦C ) ↔ ( 𝐴C𝑦C ) ) )
3 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
4 ineq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 ) = ( 𝐴𝑦 ) )
5 ineq1 ( 𝑥 = 𝐴 → ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) )
6 4 5 oveq12d ( 𝑥 = 𝐴 → ( ( 𝑥𝑦 ) ∨ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) )
7 3 6 eqeq12d ( 𝑥 = 𝐴 → ( 𝑥 = ( ( 𝑥𝑦 ) ∨ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) )
8 2 7 anbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥C𝑦C ) ∧ 𝑥 = ( ( 𝑥𝑦 ) ∨ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴C𝑦C ) ∧ 𝐴 = ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) )
9 eleq1 ( 𝑦 = 𝐵 → ( 𝑦C𝐵C ) )
10 9 anbi2d ( 𝑦 = 𝐵 → ( ( 𝐴C𝑦C ) ↔ ( 𝐴C𝐵C ) ) )
11 ineq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦 ) = ( 𝐴𝐵 ) )
12 fveq2 ( 𝑦 = 𝐵 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝐵 ) )
13 12 ineq2d ( 𝑦 = 𝐵 → ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
14 11 13 oveq12d ( 𝑦 = 𝐵 → ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) )
15 14 eqeq2d ( 𝑦 = 𝐵 → ( 𝐴 = ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) )
16 10 15 anbi12d ( 𝑦 = 𝐵 → ( ( ( 𝐴C𝑦C ) ∧ 𝐴 = ( ( 𝐴𝑦 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴C𝐵C ) ∧ 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) )
17 df-cm 𝐶 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ 𝑥 = ( ( 𝑥𝑦 ) ∨ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) }
18 8 16 17 brabg ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵 ↔ ( ( 𝐴C𝐵C ) ∧ 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) )
19 18 bianabs ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) )