| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Cℋ ↔ 𝐴 ∈ Cℋ ) ) |
| 2 |
1
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ) ) |
| 3 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 4 |
|
ineq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝑦 ) ) |
| 5 |
|
ineq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) |
| 6 |
4 5
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 7 |
3 6
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) |
| 8 |
2 7
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) ) |
| 9 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ Cℋ ↔ 𝐵 ∈ Cℋ ) ) |
| 10 |
9
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ↔ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) ) |
| 11 |
|
ineq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝐵 ) ) |
| 13 |
12
|
ineq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 14 |
11 13
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 16 |
10 15
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝑦 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 17 |
|
df-cm |
⊢ 𝐶ℋ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) } |
| 18 |
8 16 17
|
brabg |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 19 |
18
|
bianabs |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |