| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 5 | 2 3 4 | addsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  −  𝐴 )  =  ( ( ( 𝐴  −  𝐵 )  −  𝐴 )  +  𝐶 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 6 7 6 | 3jca | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 10 |  | sub32 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  −  𝐴 )  =  ( ( 𝐴  −  𝐴 )  −  𝐵 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐵 )  −  𝐴 )  =  ( ( 𝐴  −  𝐴 )  −  𝐵 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  −  𝐵 )  −  𝐴 )  +  𝐶 )  =  ( ( ( 𝐴  −  𝐴 )  −  𝐵 )  +  𝐶 ) ) | 
						
							| 13 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  −  𝐴 )  ∈  ℂ ) | 
						
							| 14 | 13 | anidms | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  𝐴 )  ∈  ℂ ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  −  𝐴 )  ∈  ℂ ) | 
						
							| 16 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 17 | 15 16 3 | subadd23d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  −  𝐴 )  −  𝐵 )  +  𝐶 )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 18 |  | subid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐵 ) )  =  ( 0  +  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐶  −  𝐵 ) )  =  ( 0  +  ( 𝐶  −  𝐵 ) ) ) | 
						
							| 21 |  | subcl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 22 | 21 | ancoms | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐶  −  𝐵 )  ∈  ℂ ) | 
						
							| 23 | 22 | addlidd | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 0  +  ( 𝐶  −  𝐵 ) )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 24 | 23 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 0  +  ( 𝐶  −  𝐵 ) )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 25 | 17 20 24 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  −  𝐴 )  −  𝐵 )  +  𝐶 )  =  ( 𝐶  −  𝐵 ) ) | 
						
							| 26 | 5 12 25 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  −  𝐵 )  +  𝐶 )  −  𝐴 )  =  ( 𝐶  −  𝐵 ) ) |