Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
3 |
|
simpr |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐷 ∈ ℂ ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ ) |
5 |
|
simpl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) |
7 |
2 4 6
|
addsubd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐷 ) − 𝐶 ) = ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) |
12 |
9 11 4
|
add32d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + 𝐷 ) = ( ( 𝐴 + 𝐷 ) + 𝐵 ) ) |
13 |
12
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐷 ) − 𝐶 ) = ( ( ( 𝐴 + 𝐷 ) + 𝐵 ) − 𝐶 ) ) |
14 |
7 13
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) = ( ( ( 𝐴 + 𝐷 ) + 𝐵 ) − 𝐶 ) ) |