| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  𝐷  ∈  ℂ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  𝐶  ∈  ℂ ) | 
						
							| 7 | 2 4 6 | addsubd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( ( 𝐴  +  𝐵 )  +  𝐷 )  −  𝐶 )  =  ( ( ( 𝐴  +  𝐵 )  −  𝐶 )  +  𝐷 ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  𝐵  ∈  ℂ ) | 
						
							| 12 | 9 11 4 | add32d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( 𝐴  +  𝐵 )  +  𝐷 )  =  ( ( 𝐴  +  𝐷 )  +  𝐵 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( ( 𝐴  +  𝐵 )  +  𝐷 )  −  𝐶 )  =  ( ( ( 𝐴  +  𝐷 )  +  𝐵 )  −  𝐶 ) ) | 
						
							| 14 | 7 13 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) )  →  ( ( ( 𝐴  +  𝐵 )  −  𝐶 )  +  𝐷 )  =  ( ( ( 𝐴  +  𝐷 )  +  𝐵 )  −  𝐶 ) ) |