Metamath Proof Explorer


Theorem cnapbmcpd

Description: ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018)

Ref Expression
Assertion cnapbmcpd A B C D A + B - C + D = A + D + B - C

Proof

Step Hyp Ref Expression
1 addcl A B A + B
2 1 adantr A B C D A + B
3 simpr C D D
4 3 adantl A B C D D
5 simpl C D C
6 5 adantl A B C D C
7 2 4 6 addsubd A B C D A + B + D - C = A + B - C + D
8 simpl A B A
9 8 adantr A B C D A
10 simpr A B B
11 10 adantr A B C D B
12 9 11 4 add32d A B C D A + B + D = A + D + B
13 12 oveq1d A B C D A + B + D - C = A + D + B - C
14 7 13 eqtr3d A B C D A + B - C + D = A + D + B - C