Metamath Proof Explorer


Theorem cnbdibl

Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cnbdibl.a ( 𝜑𝐴 ∈ dom vol )
cnbdibl.va ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ )
cnbdibl.f ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
cnbdibl.bd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
Assertion cnbdibl ( 𝜑𝐹 ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 cnbdibl.a ( 𝜑𝐴 ∈ dom vol )
2 cnbdibl.va ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ )
3 cnbdibl.f ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
4 cnbdibl.bd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
5 cnmbf ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴cn→ ℂ ) ) → 𝐹 ∈ MblFn )
6 1 3 5 syl2anc ( 𝜑𝐹 ∈ MblFn )
7 cncff ( 𝐹 ∈ ( 𝐴cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ )
8 fdm ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 )
9 3 7 8 3syl ( 𝜑 → dom 𝐹 = 𝐴 )
10 9 fveq2d ( 𝜑 → ( vol ‘ dom 𝐹 ) = ( vol ‘ 𝐴 ) )
11 10 2 eqeltrd ( 𝜑 → ( vol ‘ dom 𝐹 ) ∈ ℝ )
12 bddibl ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 )
13 6 11 4 12 syl3anc ( 𝜑𝐹 ∈ 𝐿1 )