Metamath Proof Explorer


Theorem cnflf2

Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion cnflf2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 cnflf ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) )
2 ffun ( 𝐹 : 𝑋𝑌 → Fun 𝐹 )
3 eqid 𝐽 = 𝐽
4 3 flimelbas ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 𝐽 )
5 4 ssriv ( 𝐽 fLim 𝑓 ) ⊆ 𝐽
6 fdm ( 𝐹 : 𝑋𝑌 → dom 𝐹 = 𝑋 )
7 6 adantl ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → dom 𝐹 = 𝑋 )
8 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
9 8 ad2antrr ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → 𝑋 = 𝐽 )
10 7 9 eqtrd ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → dom 𝐹 = 𝐽 )
11 5 10 sseqtrrid ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 )
12 funimass4 ( ( Fun 𝐹 ∧ ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) )
13 2 11 12 syl2an2 ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) )
14 13 ralbidv ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) )
15 14 pm5.32da ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) )
16 1 15 bitr4d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) )