Step |
Hyp |
Ref |
Expression |
1 |
|
cnflf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
2 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
3
|
flimelbas |
⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ ∪ 𝐽 ) |
5 |
4
|
ssriv |
⊢ ( 𝐽 fLim 𝑓 ) ⊆ ∪ 𝐽 |
6 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → dom 𝐹 = 𝑋 ) |
8 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
10 |
7 9
|
eqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
11 |
5 10
|
sseqtrrid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 ) |
12 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
13 |
2 11 12
|
syl2an2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
15 |
14
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
16 |
1 15
|
bitr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |