Metamath Proof Explorer


Theorem cntzfval

Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
cntzfval.p + = ( +g𝑀 )
cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion cntzfval ( 𝑀𝑉𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )

Proof

Step Hyp Ref Expression
1 cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzfval.p + = ( +g𝑀 )
3 cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
4 elex ( 𝑀𝑉𝑀 ∈ V )
5 fveq2 ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) )
6 5 1 eqtr4di ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 )
7 6 pweqd ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 𝐵 )
8 fveq2 ( 𝑚 = 𝑀 → ( +g𝑚 ) = ( +g𝑀 ) )
9 8 2 eqtr4di ( 𝑚 = 𝑀 → ( +g𝑚 ) = + )
10 9 oveqd ( 𝑚 = 𝑀 → ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑥 + 𝑦 ) )
11 9 oveqd ( 𝑚 = 𝑀 → ( 𝑦 ( +g𝑚 ) 𝑥 ) = ( 𝑦 + 𝑥 ) )
12 10 11 eqeq12d ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
13 12 ralbidv ( 𝑚 = 𝑀 → ( ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) ↔ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
14 6 13 rabeqbidv ( 𝑚 = 𝑀 → { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } = { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } )
15 7 14 mpteq12dv ( 𝑚 = 𝑀 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )
16 df-cntz Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } ) )
17 1 fvexi 𝐵 ∈ V
18 17 pwex 𝒫 𝐵 ∈ V
19 18 mptex ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ∈ V
20 15 16 19 fvmpt ( 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )
21 4 20 syl ( 𝑀𝑉 → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )
22 3 21 syl5eq ( 𝑀𝑉𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥𝐵 ∣ ∀ 𝑦𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )