| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cn |
⊢ 3 ∈ ℂ |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
picn |
⊢ π ∈ ℂ |
| 4 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 5 |
3 1 4
|
divcli |
⊢ ( π / 3 ) ∈ ℂ |
| 6 |
1 2 5
|
subdiri |
⊢ ( ( 3 − 1 ) · ( π / 3 ) ) = ( ( 3 · ( π / 3 ) ) − ( 1 · ( π / 3 ) ) ) |
| 7 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 8 |
7
|
oveq1i |
⊢ ( ( 3 − 1 ) · ( π / 3 ) ) = ( 2 · ( π / 3 ) ) |
| 9 |
3 1 4
|
divcan2i |
⊢ ( 3 · ( π / 3 ) ) = π |
| 10 |
5
|
mullidi |
⊢ ( 1 · ( π / 3 ) ) = ( π / 3 ) |
| 11 |
9 10
|
oveq12i |
⊢ ( ( 3 · ( π / 3 ) ) − ( 1 · ( π / 3 ) ) ) = ( π − ( π / 3 ) ) |
| 12 |
6 8 11
|
3eqtr3i |
⊢ ( 2 · ( π / 3 ) ) = ( π − ( π / 3 ) ) |
| 13 |
12
|
fveq2i |
⊢ ( cos ‘ ( 2 · ( π / 3 ) ) ) = ( cos ‘ ( π − ( π / 3 ) ) ) |
| 14 |
|
cospim |
⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( π − ( π / 3 ) ) ) = - ( cos ‘ ( π / 3 ) ) ) |
| 15 |
5 14
|
ax-mp |
⊢ ( cos ‘ ( π − ( π / 3 ) ) ) = - ( cos ‘ ( π / 3 ) ) |
| 16 |
|
sincos3rdpi |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
| 17 |
16
|
simpri |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
| 18 |
17
|
negeqi |
⊢ - ( cos ‘ ( π / 3 ) ) = - ( 1 / 2 ) |
| 19 |
13 15 18
|
3eqtri |
⊢ ( cos ‘ ( 2 · ( π / 3 ) ) ) = - ( 1 / 2 ) |