Metamath Proof Explorer


Theorem cos2t3rdpi

Description: The cosine of 2 x. ( _pi / 3 ) is -u 1 / 2 . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion cos2t3rdpi ( cos ‘ ( 2 · ( π / 3 ) ) ) = - ( 1 / 2 )

Proof

Step Hyp Ref Expression
1 3cn 3 ∈ ℂ
2 ax-1cn 1 ∈ ℂ
3 picn π ∈ ℂ
4 3ne0 3 ≠ 0
5 3 1 4 divcli ( π / 3 ) ∈ ℂ
6 1 2 5 subdiri ( ( 3 − 1 ) · ( π / 3 ) ) = ( ( 3 · ( π / 3 ) ) − ( 1 · ( π / 3 ) ) )
7 3m1e2 ( 3 − 1 ) = 2
8 7 oveq1i ( ( 3 − 1 ) · ( π / 3 ) ) = ( 2 · ( π / 3 ) )
9 3 1 4 divcan2i ( 3 · ( π / 3 ) ) = π
10 5 mullidi ( 1 · ( π / 3 ) ) = ( π / 3 )
11 9 10 oveq12i ( ( 3 · ( π / 3 ) ) − ( 1 · ( π / 3 ) ) ) = ( π − ( π / 3 ) )
12 6 8 11 3eqtr3i ( 2 · ( π / 3 ) ) = ( π − ( π / 3 ) )
13 12 fveq2i ( cos ‘ ( 2 · ( π / 3 ) ) ) = ( cos ‘ ( π − ( π / 3 ) ) )
14 cospim ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( π − ( π / 3 ) ) ) = - ( cos ‘ ( π / 3 ) ) )
15 5 14 ax-mp ( cos ‘ ( π − ( π / 3 ) ) ) = - ( cos ‘ ( π / 3 ) )
16 sincos3rdpi ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) )
17 16 simpri ( cos ‘ ( π / 3 ) ) = ( 1 / 2 )
18 17 negeqi - ( cos ‘ ( π / 3 ) ) = - ( 1 / 2 )
19 13 15 18 3eqtri ( cos ‘ ( 2 · ( π / 3 ) ) ) = - ( 1 / 2 )