| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cn |
|- 3 e. CC |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
picn |
|- _pi e. CC |
| 4 |
|
3ne0 |
|- 3 =/= 0 |
| 5 |
3 1 4
|
divcli |
|- ( _pi / 3 ) e. CC |
| 6 |
1 2 5
|
subdiri |
|- ( ( 3 - 1 ) x. ( _pi / 3 ) ) = ( ( 3 x. ( _pi / 3 ) ) - ( 1 x. ( _pi / 3 ) ) ) |
| 7 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 8 |
7
|
oveq1i |
|- ( ( 3 - 1 ) x. ( _pi / 3 ) ) = ( 2 x. ( _pi / 3 ) ) |
| 9 |
3 1 4
|
divcan2i |
|- ( 3 x. ( _pi / 3 ) ) = _pi |
| 10 |
5
|
mullidi |
|- ( 1 x. ( _pi / 3 ) ) = ( _pi / 3 ) |
| 11 |
9 10
|
oveq12i |
|- ( ( 3 x. ( _pi / 3 ) ) - ( 1 x. ( _pi / 3 ) ) ) = ( _pi - ( _pi / 3 ) ) |
| 12 |
6 8 11
|
3eqtr3i |
|- ( 2 x. ( _pi / 3 ) ) = ( _pi - ( _pi / 3 ) ) |
| 13 |
12
|
fveq2i |
|- ( cos ` ( 2 x. ( _pi / 3 ) ) ) = ( cos ` ( _pi - ( _pi / 3 ) ) ) |
| 14 |
|
cospim |
|- ( ( _pi / 3 ) e. CC -> ( cos ` ( _pi - ( _pi / 3 ) ) ) = -u ( cos ` ( _pi / 3 ) ) ) |
| 15 |
5 14
|
ax-mp |
|- ( cos ` ( _pi - ( _pi / 3 ) ) ) = -u ( cos ` ( _pi / 3 ) ) |
| 16 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
| 17 |
16
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
| 18 |
17
|
negeqi |
|- -u ( cos ` ( _pi / 3 ) ) = -u ( 1 / 2 ) |
| 19 |
13 15 18
|
3eqtri |
|- ( cos ` ( 2 x. ( _pi / 3 ) ) ) = -u ( 1 / 2 ) |