| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
cphip0l.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 6 |
5
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 0 ↔ ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 10 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 12 |
5 1 2 11 3
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 13 |
10 12
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 14 |
9 13
|
bitrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |