| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphip0l.z |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 | 5 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( W e. CPreHil /\ A e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = 0 <-> ( A ., A ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 10 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 12 | 5 1 2 11 3 | ipeq0 |  |-  ( ( W e. PreHil /\ A e. V ) -> ( ( A ., A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) | 
						
							| 13 | 10 12 | sylan |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) | 
						
							| 14 | 9 13 | bitrd |  |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( A ., A ) = 0 <-> A = .0. ) ) |