Metamath Proof Explorer


Theorem cphipeq0

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. Complex version of ipeq0 . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
cphip0l.z 0 ˙ = 0 W
Assertion cphipeq0 W CPreHil A V A , ˙ A = 0 A = 0 ˙

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphip0l.z 0 ˙ = 0 W
4 cphclm W CPreHil W CMod
5 eqid Scalar W = Scalar W
6 5 clm0 W CMod 0 = 0 Scalar W
7 4 6 syl W CPreHil 0 = 0 Scalar W
8 7 adantr W CPreHil A V 0 = 0 Scalar W
9 8 eqeq2d W CPreHil A V A , ˙ A = 0 A , ˙ A = 0 Scalar W
10 cphphl W CPreHil W PreHil
11 eqid 0 Scalar W = 0 Scalar W
12 5 1 2 11 3 ipeq0 W PreHil A V A , ˙ A = 0 Scalar W A = 0 ˙
13 10 12 sylan W CPreHil A V A , ˙ A = 0 Scalar W A = 0 ˙
14 9 13 bitrd W CPreHil A V A , ˙ A = 0 A = 0 ˙