Metamath Proof Explorer


Theorem cplem2

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypothesis cplem2.1 𝐴 ∈ V
Assertion cplem2 𝑦𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵𝑦 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 cplem2.1 𝐴 ∈ V
2 scottex { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V
3 1 2 iunex 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V
4 nfiu1 𝑥 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) }
5 4 nfeq2 𝑥 𝑦 = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) }
6 ineq2 ( 𝑦 = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( 𝐵𝑦 ) = ( 𝐵 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) )
7 6 neeq1d ( 𝑦 = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵𝑦 ) ≠ ∅ ↔ ( 𝐵 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) )
8 7 imbi2d ( 𝑦 = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵 ≠ ∅ → ( 𝐵𝑦 ) ≠ ∅ ) ↔ ( 𝐵 ≠ ∅ → ( 𝐵 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) )
9 5 8 ralbid ( 𝑦 = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ∀ 𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵𝑦 ) ≠ ∅ ) ↔ ∀ 𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) )
10 eqid { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) }
11 eqid 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) }
12 10 11 cplem1 𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 𝑥𝐴 { 𝑧𝐵 ∣ ∀ 𝑤𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ )
13 3 9 12 ceqsexv2d 𝑦𝑥𝐴 ( 𝐵 ≠ ∅ → ( 𝐵𝑦 ) ≠ ∅ )