Metamath Proof Explorer


Theorem cpmadugsum

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
cpmadugsum.g + = ( +g𝑌 )
cpmadugsum.s = ( -g𝑌 )
cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
cpmadugsum.0 0 = ( 0g𝑌 )
cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
Assertion cpmadugsum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 cpmadugsum.g + = ( +g𝑌 )
12 cpmadugsum.s = ( -g𝑌 )
13 cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
14 cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
15 cpmadugsum.0 0 = ( 0g𝑌 )
16 cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cpmadugsumfi ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
18 simpr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
19 1 2 3 4 9 12 15 5 16 6 8 7 11 chfacfscmulgsum ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
20 19 eqcomd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
21 20 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
22 18 21 eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
23 22 ex ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) )
24 23 reximdvva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) )
25 17 24 mpd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )