| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadugsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cpmadugsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cpmadugsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
cpmadugsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
cpmadugsum.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 6 |
|
cpmadugsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
cpmadugsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 8 |
|
cpmadugsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 9 |
|
cpmadugsum.r |
⊢ × = ( .r ‘ 𝑌 ) |
| 10 |
|
cpmadugsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 11 |
|
cpmadugsum.g |
⊢ + = ( +g ‘ 𝑌 ) |
| 12 |
|
cpmadugsum.s |
⊢ − = ( -g ‘ 𝑌 ) |
| 13 |
|
cpmadugsum.i |
⊢ 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
| 14 |
|
cpmadugsum.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
| 15 |
|
oveq2 |
⊢ ( ( 𝐽 ‘ 𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) |
| 16 |
13
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 19 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 20 |
19
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 21 |
20
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 23 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑌 ∈ Ring ) |
| 25 |
3 4
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod ) |
| 26 |
19 25
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod ) |
| 27 |
19
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 29 |
6 3 28
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 30 |
27 29
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 31 |
3
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 32 |
4
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 33 |
31 32
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 35 |
30 34
|
eleqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 36 |
19 23
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
| 37 |
18 10
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 39 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
| 40 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
| 41 |
18 39 8 40
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 42 |
26 35 38 41
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 43 |
42
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 45 |
5 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 46 |
19 45
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 48 |
|
ringcmn |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ CMnd ) |
| 49 |
36 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ CMnd ) |
| 50 |
49
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ CMnd ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑌 ∈ CMnd ) |
| 52 |
|
fzfid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin ) |
| 53 |
21
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 54 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
| 55 |
|
ffvelcdm |
⊢ ( ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ) |
| 56 |
55
|
ex |
⊢ ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 57 |
54 56
|
syl |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 58 |
57
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑛 ∈ ( 0 ... 𝑠 ) → ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ) |
| 60 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑠 ) → 𝑛 ∈ ℕ0 ) |
| 61 |
60
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → 𝑛 ∈ ℕ0 ) |
| 62 |
1 2 5 3 4 18 8 7 6
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝑏 ‘ 𝑛 ) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 63 |
53 59 61 62
|
syl12anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ∀ 𝑛 ∈ ( 0 ... 𝑠 ) ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 65 |
18 51 52 64
|
gsummptcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 66 |
18 9 12 24 44 47 65
|
ringsubdir |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ↑ 𝑋 ) = ( 𝑖 ↑ 𝑋 ) ) |
| 68 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
| 69 |
67 68
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) = ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
| 70 |
69
|
cbvmptv |
⊢ ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
| 71 |
70
|
oveq2i |
⊢ ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 72 |
71
|
oveq2i |
⊢ ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
| 73 |
71
|
oveq2i |
⊢ ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
| 74 |
72 73
|
oveq12i |
⊢ ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
| 75 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmadugsumlemF |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 76 |
75
|
anassrs |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 77 |
74 76
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 78 |
17 66 77
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐼 × ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 79 |
15 78
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐽 ‘ 𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 80 |
4 14 18
|
maduf |
⊢ ( 𝑃 ∈ CRing → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 81 |
31 80
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 82 |
81
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 83 |
1 2 3 4 6 5 12 8 10 13
|
chmatcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) ) |
| 84 |
19 83
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) ) |
| 85 |
82 84
|
ffvelcdmd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐽 ‘ 𝐼 ) ∈ ( Base ‘ 𝑌 ) ) |
| 86 |
3 4 18 8 7 6 5 1 2
|
pmatcollpw3fi1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ ( 𝐽 ‘ 𝐼 ) ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) |
| 87 |
85 86
|
syld3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 ) = ( 𝑌 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) |
| 88 |
79 87
|
reximddv2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |