| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadugsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadugsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadugsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadugsum.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadugsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | cpmadugsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | cpmadugsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | cpmadugsum.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 10 |  | cpmadugsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 11 |  | cpmadugsum.g | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 12 |  | cpmadugsum.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 13 |  | cpmadugsum.i | ⊢ 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 14 |  | cpmadugsum.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 15 |  | oveq2 | ⊢ ( ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 16 | 13 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 19 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 20 | 19 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 23 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 25 | 3 4 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  LMod ) | 
						
							| 26 | 19 25 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod ) | 
						
							| 27 | 19 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 29 | 6 3 28 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 30 | 27 29 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 31 | 3 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 32 | 4 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 33 | 31 32 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 35 | 30 34 | eleqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 36 | 19 23 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 37 | 18 10 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 39 |  | eqid | ⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 41 | 18 39 8 40 | lmodvscl | ⊢ ( ( 𝑌  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧   1   ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 42 | 26 35 38 41 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 43 | 42 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 45 | 5 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 46 | 19 45 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 48 |  | ringcmn | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  CMnd ) | 
						
							| 49 | 36 48 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  CMnd ) | 
						
							| 50 | 49 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  CMnd ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑌  ∈  CMnd ) | 
						
							| 52 |  | fzfid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0 ... 𝑠 )  ∈  Fin ) | 
						
							| 53 | 21 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 54 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 55 |  | ffvelcdm | ⊢ ( ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) | 
						
							| 56 | 55 | ex | ⊢ ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) ) | 
						
							| 57 | 54 56 | syl | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) | 
						
							| 60 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... 𝑠 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 62 | 1 2 5 3 4 18 8 7 6 | mat2pmatscmxcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝑏 ‘ 𝑛 )  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 63 | 53 59 61 62 | syl12anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 64 | 63 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ∀ 𝑛  ∈  ( 0 ... 𝑠 ) ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 65 | 18 51 52 64 | gsummptcl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 66 | 18 9 12 24 44 47 65 | ringsubdir | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 67 |  | oveq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ↑  𝑋 )  =  ( 𝑖  ↑  𝑋 ) ) | 
						
							| 68 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 69 | 67 68 | oveq12d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  =  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 70 | 69 | cbvmptv | ⊢ ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 71 | 70 | oveq2i | ⊢ ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 72 | 71 | oveq2i | ⊢ ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 73 | 71 | oveq2i | ⊢ ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 74 | 72 73 | oveq12i | ⊢ ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 8 9 10 11 12 | cpmadugsumlemF | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 76 | 75 | anassrs | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 77 | 74 76 | eqtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 78 | 17 66 77 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 79 | 15 78 | sylan9eqr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 80 | 4 14 18 | maduf | ⊢ ( 𝑃  ∈  CRing  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 81 | 31 80 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 82 | 81 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 83 | 1 2 3 4 6 5 12 8 10 13 | chmatcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 84 | 19 83 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 85 | 82 84 | ffvelcdmd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐽 ‘ 𝐼 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 86 | 3 4 18 8 7 6 5 1 2 | pmatcollpw3fi1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  ( 𝐽 ‘ 𝐼 )  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 87 | 85 86 | syld3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 88 | 79 87 | reximddv2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |