Metamath Proof Explorer


Theorem cpmadugsumfi

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019) (Proof shortened by AV, 29-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
cpmadugsum.g +˙=+Y
cpmadugsum.s -˙=-Y
cpmadugsum.i I=X·˙1˙-˙TM
cpmadugsum.j J=NmaAdjuP
Assertion cpmadugsumfi NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 cpmadugsum.g +˙=+Y
12 cpmadugsum.s -˙=-Y
13 cpmadugsum.i I=X·˙1˙-˙TM
14 cpmadugsum.j J=NmaAdjuP
15 oveq2 JI=Yn=0sn×˙X·˙TbnI×˙JI=I×˙Yn=0sn×˙X·˙Tbn
16 13 a1i NFinRCRingMBsbB0sI=X·˙1˙-˙TM
17 16 oveq1d NFinRCRingMBsbB0sI×˙Yn=0sn×˙X·˙Tbn=X·˙1˙-˙TM×˙Yn=0sn×˙X·˙Tbn
18 eqid BaseY=BaseY
19 crngring RCRingRRing
20 19 anim2i NFinRCRingNFinRRing
21 20 3adant3 NFinRCRingMBNFinRRing
22 21 ad2antrr NFinRCRingMBsbB0sNFinRRing
23 3 4 pmatring NFinRRingYRing
24 22 23 syl NFinRCRingMBsbB0sYRing
25 3 4 pmatlmod NFinRRingYLMod
26 19 25 sylan2 NFinRCRingYLMod
27 19 adantl NFinRCRingRRing
28 eqid BaseP=BaseP
29 6 3 28 vr1cl RRingXBaseP
30 27 29 syl NFinRCRingXBaseP
31 3 ply1crng RCRingPCRing
32 4 matsca2 NFinPCRingP=ScalarY
33 31 32 sylan2 NFinRCRingP=ScalarY
34 33 fveq2d NFinRCRingBaseP=BaseScalarY
35 30 34 eleqtrd NFinRCRingXBaseScalarY
36 19 23 sylan2 NFinRCRingYRing
37 18 10 ringidcl YRing1˙BaseY
38 36 37 syl NFinRCRing1˙BaseY
39 eqid ScalarY=ScalarY
40 eqid BaseScalarY=BaseScalarY
41 18 39 8 40 lmodvscl YLModXBaseScalarY1˙BaseYX·˙1˙BaseY
42 26 35 38 41 syl3anc NFinRCRingX·˙1˙BaseY
43 42 3adant3 NFinRCRingMBX·˙1˙BaseY
44 43 ad2antrr NFinRCRingMBsbB0sX·˙1˙BaseY
45 5 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
46 19 45 syl3an2 NFinRCRingMBTMBaseY
47 46 ad2antrr NFinRCRingMBsbB0sTMBaseY
48 ringcmn YRingYCMnd
49 36 48 syl NFinRCRingYCMnd
50 49 3adant3 NFinRCRingMBYCMnd
51 50 ad2antrr NFinRCRingMBsbB0sYCMnd
52 fzfid NFinRCRingMBsbB0s0sFin
53 21 ad3antrrr NFinRCRingMBsbB0sn0sNFinRRing
54 elmapi bB0sb:0sB
55 ffvelcdm b:0sBn0sbnB
56 55 ex b:0sBn0sbnB
57 54 56 syl bB0sn0sbnB
58 57 adantl NFinRCRingMBsbB0sn0sbnB
59 58 imp NFinRCRingMBsbB0sn0sbnB
60 elfznn0 n0sn0
61 60 adantl NFinRCRingMBsbB0sn0sn0
62 1 2 5 3 4 18 8 7 6 mat2pmatscmxcl NFinRRingbnBn0n×˙X·˙TbnBaseY
63 53 59 61 62 syl12anc NFinRCRingMBsbB0sn0sn×˙X·˙TbnBaseY
64 63 ralrimiva NFinRCRingMBsbB0sn0sn×˙X·˙TbnBaseY
65 18 51 52 64 gsummptcl NFinRCRingMBsbB0sYn=0sn×˙X·˙TbnBaseY
66 18 9 12 24 44 47 65 ringsubdir NFinRCRingMBsbB0sX·˙1˙-˙TM×˙Yn=0sn×˙X·˙Tbn=X·˙1˙×˙Yn=0sn×˙X·˙Tbn-˙TM×˙Yn=0sn×˙X·˙Tbn
67 oveq1 n=in×˙X=i×˙X
68 2fveq3 n=iTbn=Tbi
69 67 68 oveq12d n=in×˙X·˙Tbn=i×˙X·˙Tbi
70 69 cbvmptv n0sn×˙X·˙Tbn=i0si×˙X·˙Tbi
71 70 oveq2i Yn=0sn×˙X·˙Tbn=Yi=0si×˙X·˙Tbi
72 71 oveq2i X·˙1˙×˙Yn=0sn×˙X·˙Tbn=X·˙1˙×˙Yi=0si×˙X·˙Tbi
73 71 oveq2i TM×˙Yn=0sn×˙X·˙Tbn=TM×˙Yi=0si×˙X·˙Tbi
74 72 73 oveq12i X·˙1˙×˙Yn=0sn×˙X·˙Tbn-˙TM×˙Yn=0sn×˙X·˙Tbn=X·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi
75 1 2 3 4 5 6 7 8 9 10 11 12 cpmadugsumlemF NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
76 75 anassrs NFinRCRingMBsbB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi-˙TM×˙Yi=0si×˙X·˙Tbi=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
77 74 76 eqtrid NFinRCRingMBsbB0sX·˙1˙×˙Yn=0sn×˙X·˙Tbn-˙TM×˙Yn=0sn×˙X·˙Tbn=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
78 17 66 77 3eqtrd NFinRCRingMBsbB0sI×˙Yn=0sn×˙X·˙Tbn=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
79 15 78 sylan9eqr NFinRCRingMBsbB0sJI=Yn=0sn×˙X·˙TbnI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0
80 4 14 18 maduf PCRingJ:BaseYBaseY
81 31 80 syl RCRingJ:BaseYBaseY
82 81 3ad2ant2 NFinRCRingMBJ:BaseYBaseY
83 1 2 3 4 6 5 12 8 10 13 chmatcl NFinRRingMBIBaseY
84 19 83 syl3an2 NFinRCRingMBIBaseY
85 82 84 ffvelcdmd NFinRCRingMBJIBaseY
86 3 4 18 8 7 6 5 1 2 pmatcollpw3fi1 NFinRCRingJIBaseYsbB0sJI=Yn=0sn×˙X·˙Tbn
87 85 86 syld3an3 NFinRCRingMBsbB0sJI=Yn=0sn×˙X·˙Tbn
88 79 87 reximddv2 NFinRCRingMBsbB0sI×˙JI=Yi=1si×˙X·˙Tbi1-˙TM×˙Tbi+˙s+1×˙X·˙Tbs-˙TM×˙Tb0