Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
|
2 |
|
cpmadugsum.b |
|
3 |
|
cpmadugsum.p |
|
4 |
|
cpmadugsum.y |
|
5 |
|
cpmadugsum.t |
|
6 |
|
cpmadugsum.x |
|
7 |
|
cpmadugsum.e |
|
8 |
|
cpmadugsum.m |
|
9 |
|
cpmadugsum.r |
|
10 |
|
cpmadugsum.1 |
|
11 |
|
cpmadugsum.g |
|
12 |
|
cpmadugsum.s |
|
13 |
|
cpmadugsum.i |
|
14 |
|
cpmadugsum.j |
|
15 |
|
oveq2 |
|
16 |
13
|
a1i |
|
17 |
16
|
oveq1d |
|
18 |
|
eqid |
|
19 |
|
crngring |
|
20 |
19
|
anim2i |
|
21 |
20
|
3adant3 |
|
22 |
21
|
ad2antrr |
|
23 |
3 4
|
pmatring |
|
24 |
22 23
|
syl |
|
25 |
3 4
|
pmatlmod |
|
26 |
19 25
|
sylan2 |
|
27 |
19
|
adantl |
|
28 |
|
eqid |
|
29 |
6 3 28
|
vr1cl |
|
30 |
27 29
|
syl |
|
31 |
3
|
ply1crng |
|
32 |
4
|
matsca2 |
|
33 |
31 32
|
sylan2 |
|
34 |
33
|
fveq2d |
|
35 |
30 34
|
eleqtrd |
|
36 |
19 23
|
sylan2 |
|
37 |
18 10
|
ringidcl |
|
38 |
36 37
|
syl |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
18 39 8 40
|
lmodvscl |
|
42 |
26 35 38 41
|
syl3anc |
|
43 |
42
|
3adant3 |
|
44 |
43
|
ad2antrr |
|
45 |
5 1 2 3 4
|
mat2pmatbas |
|
46 |
19 45
|
syl3an2 |
|
47 |
46
|
ad2antrr |
|
48 |
|
ringcmn |
|
49 |
36 48
|
syl |
|
50 |
49
|
3adant3 |
|
51 |
50
|
ad2antrr |
|
52 |
|
fzfid |
|
53 |
21
|
ad3antrrr |
|
54 |
|
elmapi |
|
55 |
|
ffvelrn |
|
56 |
55
|
ex |
|
57 |
54 56
|
syl |
|
58 |
57
|
adantl |
|
59 |
58
|
imp |
|
60 |
|
elfznn0 |
|
61 |
60
|
adantl |
|
62 |
1 2 5 3 4 18 8 7 6
|
mat2pmatscmxcl |
|
63 |
53 59 61 62
|
syl12anc |
|
64 |
63
|
ralrimiva |
|
65 |
18 51 52 64
|
gsummptcl |
|
66 |
18 9 12 24 44 47 65
|
rngsubdir |
|
67 |
|
oveq1 |
|
68 |
|
2fveq3 |
|
69 |
67 68
|
oveq12d |
|
70 |
69
|
cbvmptv |
|
71 |
70
|
oveq2i |
|
72 |
71
|
oveq2i |
|
73 |
71
|
oveq2i |
|
74 |
72 73
|
oveq12i |
|
75 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmadugsumlemF |
|
76 |
75
|
anassrs |
|
77 |
74 76
|
eqtrid |
|
78 |
17 66 77
|
3eqtrd |
|
79 |
15 78
|
sylan9eqr |
|
80 |
4 14 18
|
maduf |
|
81 |
31 80
|
syl |
|
82 |
81
|
3ad2ant2 |
|
83 |
1 2 3 4 6 5 12 8 10 13
|
chmatcl |
|
84 |
19 83
|
syl3an2 |
|
85 |
82 84
|
ffvelrnd |
|
86 |
3 4 18 8 7 6 5 1 2
|
pmatcollpw3fi1 |
|
87 |
85 86
|
syld3an3 |
|
88 |
79 87
|
reximddv2 |
|